Integration using residue theorem (part 2)

Click For Summary
SUMMARY

The integral $$\int_{-\infty}^{\infty}\frac{dx}{(x^2+4)^2}$$ is evaluated using the Residue Theorem by considering the contour integral $$\oint_c\frac{dz}{(z^2 + 4)^2}$$. The contour C is defined along the real axis and the upper half of the semicircle with radius R, where R must be greater than 2 to ensure the singularity at $z = 2i$ lies within the contour. This choice of R is crucial for applying the theorem effectively, as it allows for the limit as $R \to \infty$ to be taken, thereby facilitating the evaluation of the original integral.

PREREQUISITES
  • Complex analysis fundamentals
  • Understanding of contour integration
  • Residue Theorem application
  • Knowledge of singularities in complex functions
NEXT STEPS
  • Study the application of the Residue Theorem in complex analysis
  • Learn about contour integration techniques
  • Explore singularities and their impact on integration
  • Investigate the behavior of integrals at infinity
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, as well as physicists and engineers who utilize contour integration in their work.

aruwin
Messages
204
Reaction score
0
Hello.
I need some explanation here. I got the solution but I don't understand something.

Question:
Find the integral using Residue Theorem.

$$\int_{-\infty}^{\infty}\frac{dx}{(x^2+4)^2}$$

Here is the first part of the solution that I don't understand:

To evaluate $\int_{-\infty}^{\infty}\frac{dx}{(x^2+4)^2}$, consider $\oint_c\frac{dz}{(z^2 + 4)^2}$,
where C consists of the real axis [-R, R] with R > 2, and the upper half of Γ: |z| = R (all with counterclockwise orientation).

My question: Why is R>2?
 
Physics news on Phys.org
It's an assumption, not a result, that $R > 2$. This assumption was made so that the singularity of $f$ at $z = 2i$ lies inside C.
 
Euge said:
It's an assumption, not a result, that $R > 2$. This assumption was made so that the singularity of $f$ at $z = 2i$ lies inside C.

Ok, but why must the singularity lies inside C?
 
aruwin said:
Ok, but why must the singularity lies inside C?

At some point in the calculation, you're going to let $R \to \infty$ to find the value of $\int_{-\infty}^\infty \frac{dx}{(x^2 + 4)^2}$. As $R$ increases without bound, $C$ will contain the singularity of $f$ at $z = 2i$. Knowing that, you choose $R$ large enough in the setup of the contour. Also, keep the following in mind. If $0 < R < 2$, the contour $C$ will contain no singularity of $f$, but you cannot take the limit as $R \to \infty$ as $R < 2$. Then integrating over $C$ will serve no purpose.
 
Euge said:
At some point in the calculation, you're going to let $R \to \infty$ to find the value of $\int_{-\infty}^\infty \frac{dx}{(x^2 + 4)^2}$. As $R$ increases without bound, $C$ will contain the singularity of $f$ at $z = 2i$. Knowing that, you choose $R$ large enough in the setup of the contour. Also, keep the following in mind. If $0 < R < 2$, the contour $C$ will contain no singularity of $f$, but you cannot take the limit as $R \to \infty$ as $R < 2$. Then integrating over $C$ will serve no purpose.

Thank you for the explanation. I got it now :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K