Integration using residue theorem

Click For Summary
SUMMARY

The discussion focuses on using the residue theorem to evaluate the integral $$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$. The integral is transformed into a contour integral in the complex plane, leading to the expression $$\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$. The poles of the function are identified, and the residue at the pole \(z=\frac{3}{4}\) is computed, initially yielding an incorrect result. The final correct evaluation of the integral is determined to be $$\frac{2\pi}{7}$$ after correcting a miscalculation in the residue computation.

PREREQUISITES
  • Understanding of complex analysis, specifically the residue theorem
  • Familiarity with contour integration techniques
  • Knowledge of singularities and poles in complex functions
  • Ability to compute residues for complex functions
NEXT STEPS
  • Study the residue theorem in detail, focusing on its applications in contour integration
  • Learn how to identify and classify poles of complex functions
  • Practice computing residues for various complex functions
  • Explore additional examples of integrals evaluated using the residue theorem
USEFUL FOR

Students and professionals in mathematics, particularly those studying complex analysis, as well as physicists and engineers who apply these concepts in their work.

aruwin
Messages
204
Reaction score
0
Hi. I have to use the residue theorem to integrate f(z).
Can someone help me out? I am stuck on the factorization part.

Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$

My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$

$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$
 
Physics news on Phys.org
aruwin said:
Hi. I have to use the residue theorem to integrate f(z).
Can someone help me out? I am stuck on the factorization part.

Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$

My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$

$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$

Excellent!... now find the poles of $\displaystyle f(z) = - \frac{1}{i\ (12\ z^{2} - 25\ z + 12)}$ and then compute the residues of the poles inside the unit circle...

Kind regards

$\chi$ $\sigma$
 
Here's my continuation:

$$\frac{1}{i}\oint_{c}^{}\frac{dz}{-(4z-3)(3z-4)}=-\frac{1}{i}\oint_{c}^{}\frac{dz}{(4z-3)(3z-4)}$$

It has a singularity at z=3/4

$$Resf(z)_{|z=\frac{3}{4}|}=\lim_{{z}\to{\frac{3}{4}}}(z-\frac{3}{4})(\frac{1}{(4z-3)(3z-4)})=\frac{-7}{5}$$

By residue theorem, the integral becomes
$$2\pi{i}\frac{-1}{i}\frac{-7}{5}=\frac{14\pi}{5} $$

Is this correct? Check please.
 
aruwin said:
Here's my continuation:

$$\frac{1}{i}\oint_{c}^{}\frac{dz}{-(4z-3)(3z-4)}=-\frac{1}{i}\oint_{c}^{}\frac{dz}{(4z-3)(3z-4)}$$

It has a singularity at z=3/4

$$Resf(z)_{|z=\frac{3}{4}|}=\lim_{{z}\to{\frac{3}{4}}}(z-\frac{3}{4})(\frac{1}{(4z-3)(3z-4)})=\frac{-7}{5}$$

By residue theorem, the integral becomes
$$2\pi{i}\frac{-1}{i}\frac{-7}{5}=\frac{14\pi}{5} $$

Is this correct? Check please.

Excellent!...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Excellent!...

Kind regards

$\chi$ $\sigma$

I had a miscalculation. The final answer should be $\frac{2\pi}{7}$.
 
Last edited:
aruwin said:
I had a miscalculation. The final answer should be $\frac{2\pi}{7}$.

Effectively there was a mistake in the computation of the residue...

$\displaystyle r = - \frac{1}{i}\ \lim_{z \rightarrow \frac{3}{4}} \frac{z - \frac{3}{4}}{(3 z - 4)\ (4 z - 3)} = \frac{1}{7\ i}$

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K