MHB Integration using residue theorem

Click For Summary
The discussion focuses on using the residue theorem to evaluate the integral of the function f(z). The initial integral presented is $$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$, which is transformed into a contour integral. Participants discuss finding the poles of the function and computing the residues, with the singularity identified at z=3/4. After some back-and-forth, a miscalculation is revealed, leading to the corrected final answer of $$\frac{2\pi}{7}$$ for the integral. The importance of accurate residue computation is emphasized throughout the discussion.
aruwin
Messages
204
Reaction score
0
Hi. I have to use the residue theorem to integrate f(z).
Can someone help me out? I am stuck on the factorization part.

Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$

My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$

$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$
 
Physics news on Phys.org
aruwin said:
Hi. I have to use the residue theorem to integrate f(z).
Can someone help me out? I am stuck on the factorization part.

Find the integral
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}$$

My answer:
$$\int_{0}^{2\pi} \,\frac{d\theta}{25-24\cos\left({\theta}\right)}=\oint_{c}^{} \,\frac{dz/iz}{25-24(\frac{1}{2}(z+\frac{1}{z}))}$$

$$=\frac{1}{i}\oint_{c}^{} \,\frac{dz}{-12z^2+25z-12}$$

Excellent!... now find the poles of $\displaystyle f(z) = - \frac{1}{i\ (12\ z^{2} - 25\ z + 12)}$ and then compute the residues of the poles inside the unit circle...

Kind regards

$\chi$ $\sigma$
 
Here's my continuation:

$$\frac{1}{i}\oint_{c}^{}\frac{dz}{-(4z-3)(3z-4)}=-\frac{1}{i}\oint_{c}^{}\frac{dz}{(4z-3)(3z-4)}$$

It has a singularity at z=3/4

$$Resf(z)_{|z=\frac{3}{4}|}=\lim_{{z}\to{\frac{3}{4}}}(z-\frac{3}{4})(\frac{1}{(4z-3)(3z-4)})=\frac{-7}{5}$$

By residue theorem, the integral becomes
$$2\pi{i}\frac{-1}{i}\frac{-7}{5}=\frac{14\pi}{5} $$

Is this correct? Check please.
 
aruwin said:
Here's my continuation:

$$\frac{1}{i}\oint_{c}^{}\frac{dz}{-(4z-3)(3z-4)}=-\frac{1}{i}\oint_{c}^{}\frac{dz}{(4z-3)(3z-4)}$$

It has a singularity at z=3/4

$$Resf(z)_{|z=\frac{3}{4}|}=\lim_{{z}\to{\frac{3}{4}}}(z-\frac{3}{4})(\frac{1}{(4z-3)(3z-4)})=\frac{-7}{5}$$

By residue theorem, the integral becomes
$$2\pi{i}\frac{-1}{i}\frac{-7}{5}=\frac{14\pi}{5} $$

Is this correct? Check please.

Excellent!...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Excellent!...

Kind regards

$\chi$ $\sigma$

I had a miscalculation. The final answer should be $\frac{2\pi}{7}$.
 
Last edited:
aruwin said:
I had a miscalculation. The final answer should be $\frac{2\pi}{7}$.

Effectively there was a mistake in the computation of the residue...

$\displaystyle r = - \frac{1}{i}\ \lim_{z \rightarrow \frac{3}{4}} \frac{z - \frac{3}{4}}{(3 z - 4)\ (4 z - 3)} = \frac{1}{7\ i}$

Kind regards

$\chi$ $\sigma$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K