MHB Interchanging Summation and Integrals?

Click For Summary
The discussion centers on the interchange of summation and integration in a mathematical expression involving series and integrals. The user seeks clarification on the theorem or property that permits this interchange. A response provides a link to a resource detailing the relevant theorem, suggesting that further information can be found through a Google search. The conversation emphasizes the importance of understanding the criteria for such mathematical operations. This interchange is a common topic in analysis and requires familiarity with specific convergence conditions.
Amad27
Messages
409
Reaction score
1
Hello,

Suppose we have:

$$\begin{align}
\sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}
&=\frac{1}{3}\sum_{n=1}^{\infty}\left(\frac{1}{3n - 1}-\frac{1}{3n + 2}\right)\\\\
&=\frac{1}{3}\sum_{n=1}^{\infty}\int_0^1\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\
&=\frac{1}{3}\int_0^1\sum_{n=1}^{\infty}\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\ \end{align}$$

How can you interchange the summation and integral?

what theorem allows this (or property)?? Thanks!
 
Physics news on Phys.org
Olok said:
Hello,

Suppose we have:

$$\begin{align}
\sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}
&=\frac{1}{3}\sum_{n=1}^{\infty}\left(\frac{1}{3n - 1}-\frac{1}{3n + 2}\right)\\\\
&=\frac{1}{3}\sum_{n=1}^{\infty}\int_0^1\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\
&=\frac{1}{3}\int_0^1\sum_{n=1}^{\infty}\left(x^{3n-2}-x^{3n+1}\right){\rm d}x\\\\ \end{align}$$

How can you interchange the summation and integral?

what theorem allows this (or property)?? Thanks!

Hi Olok, :)

Here's a link containing the theorem you are looking for.

criterion for interchanging summation and integration | planetmath.org

Also a Google search will give you a lot of places where this is discussed.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K