Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Interesting proof of sequence limit

  1. Feb 9, 2008 #1
    Prove that sequence [tex]x_n=\frac{n}{\sqrt[n]{n!}}[/tex] is increasing and [tex]\lim_{n\rightarrow\infty}{x_n} = e[/tex]

    My attempt:
    First, I try to prove [tex]\forall n\in N:\frac{x_{n+1}}{x_n}>1[/tex].
    [tex]\forall n\in :\frac{x_{n+1}}{x_n}=\frac{n+1}{n}\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}}
    =\sqrt[n(n+1)]{\frac{(n+1)^{n^2}n!}{n^{n^2+n}}}[/tex] and this is dead end.

    Another attempt, we have [tex]x_1 > 0, x_2 > 0, ..., x_n>0:\sqrt[n]{x_1x_2..x_n}\leq\frac{x_1+x_2+...+x_n}{n}[/tex], where equality is then [tex]x_1=x_2=...=x_n[/tex]
    So, [tex]\forall n\in N: \sqrt[n]{n!}<\frac{(1+n)n}{2n}=\frac{n+1}{2}
    \Longrightarrow x_n=\frac{n}{\sqrt[n]{n!}}>\frac{2n}{1+n}=y_n[/tex]
    Sequence [tex](y_n)[/tex] is increasing, because [tex]\forall n\in N:\frac{y_{n+1}}{y_n}=\frac{2(n+1)}{n+2}\frac{1+n}{n+2}=\frac{n^2+2n+1}{n+2}=n+\frac{1}{n+2}>1[/tex]

    Can I say, [tex]x_n[/tex] is increasing, because [tex]y_n[/tex] is increasing and [tex]x_n > y_n, n \in N[/tex] ?

    Next, we have [tex]n!>\left({\frac{n}{e}}\right)^n, n \in N[/tex]. I will omit the proof of this inequality, it is proven very simply by using math. induction.

    So, we have [tex]\forall n\in N:n!>\left({\frac{n}{e}}\right)^n \Longrightarrow e>\frac{n}{\sqrt[n]{n!}}[/tex]

    Next, [tex]\forall n \in N: \sqrt[n]{n!} < \frac{(n+1)n}{2n} = \left(1 + \frac{1}{n}\right) \frac{n}{2}<\left(1 + \frac{1}{n}\right)n=\frac{1}{1-\frac{1}{n+1}}n \Longrightarrow x_n=\frac{n}{\sqrt[n]{n!}}>1-\frac{1}{n+1}>1-\frac{1}{n}>\left(1-\frac{1}{n}\right)^{n}=z_n[/tex]

    Finally, we have [tex]\forall n \in N: e> x_n=\frac{n}{\sqrt[n]{n!}}>z_n[/tex]
    and [tex]\lim_{n\rightarrow\infty}z_n=e \Longrightarrow \lim_{n\rightarrow\infty}x_n=e[/tex]


    Is it correct ? Any suggestions ? I am missing something here...
    Last edited: Feb 9, 2008
  2. jcsd
  3. Feb 9, 2008 #2
    And another related problem with one above: Prove sequence [tex](y_n), y_n=\frac{n}{\left(\sqrt[n]{n!}\right)^2}[/tex] is decreasing and [tex]\lim y_n = 0 [/tex].
    I see [tex]y_n=\frac{x_n^2}{n}[/tex] and [tex]\lim y_n = \frac{\lim x_n^2}{\lim_{n\rightarrow\infty}n}=\frac{e^2}{\lim_{\rightarrow\infty}n}=0.[/tex]

    But how to show sequence is decreasing ?
  4. Feb 9, 2008 #3


    User Avatar

    No you can't.
    Also, you missed the ! in the original equation for x_n.

    The first thing I see with expression for x_n (once I realised that it should be n! not n in the denominator) is that if you expand out the n! you get


    This is just a geometric mean. Maybe that helps you?
    Last edited: Feb 9, 2008
  5. Feb 9, 2008 #4


    User Avatar

    might be easier to take logs, so
    \log x_n = \sum_{k=1}^{n} (-\log(k/n)) (1/n)
    which will approach the limit [itex]\int_0^1(-\log(x))dx[/itex] from below. You still need to show that the approximations converge monotonically to the limit as n increases.
  6. Feb 9, 2008 #5
    Thank you, gel, I have corrected x_n with ! in my first post. Also, I have found error in my original post:
    [tex]\lim_{n\rightarrow\infty}z_n=e \Longrightarrow \lim_{n\rightarrow\infty}x_n=e[/tex]

    Should be: [tex]\lim_{n\rightarrow\infty}z_n=\frac{1}{e} \Longrightarrow e\geq \lim_{n\rightarrow\infty}x_n\geq \frac{1}{e}[/tex]

    So, now I have proven [tex]x_n[/tex] is bounded, but not the convergence to e :-(
    I'll think about geometric mean and logarithms, maybe I will come up with something :-)
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook