Interesting ways to evaluate integrals

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Integrals Interesting
Click For Summary
SUMMARY

This discussion focuses on innovative methods for evaluating the integral of the arctangent function, specifically \(\int{\arctan{(x)}\,dx}\). The first method utilizes substitution with \(u = 1 + x^2\), transforming the integral into \(\ln{(1 + x^2)} + C\). The second method employs integration by parts, leading to the equation \(\int{\arctan{(x)}\,dx} = x\arctan{(x)} - \frac{1}{2}\ln{(1 + x^2)} + C\). Both approaches yield the same result, demonstrating the versatility of integral evaluation techniques.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of integration by parts
  • Basic logarithmic properties
NEXT STEPS
  • Study advanced integration techniques such as trigonometric substitution
  • Explore the application of definite integrals in real-world scenarios
  • Learn about the properties of logarithmic and arctangent functions
  • Investigate numerical methods for integral evaluation
USEFUL FOR

Students, educators, and mathematicians interested in enhancing their skills in integral calculus and exploring various methods for evaluating integrals effectively.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Hi everyone. Just for fun I thought we could post some of the more interesting ways we know of to evaluate integrals :)

For starters, to evaluate [math]\displaystyle \begin{align*} \int{\arctan{(x)}\,dx} \end{align*}[/math], first we consider the integral [math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} \end{align*}[/math]. For simplicity, we'll leave out integration constants til the end...

We can integrate this using a substitution [math]\displaystyle \begin{align*} u = 1 + x^2 \implies du = 2x\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} &= \int{\frac{1}{u}\,du} \\ &= \ln{|u|} + C \\ &= \ln{ \left| 1 + x^2 \right| } + C \\ &= \ln{ \left( 1 + x^2 \right) } \textrm{ since } 1 + x^2 > 0 \textrm{ for all } x \in \mathbf{R} \end{align*}[/math]

Now supposing we wanted to evaluate the integral in a different way, using integration by parts with [math]\displaystyle \begin{align*} u = 2x \implies du = 2\,dx \end{align*}[/math] and [math]\displaystyle \begin{align*} dv = \frac{1}{1 + x^2}\,dx \implies v = \arctan{(x)} \end{align*}[/math], then we would have

[math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} &= \int{2x \left( \frac{1}{1 + x^2} \right) dx} \\ &= 2x\arctan{(x)} - \int{2\arctan{(x)}\,dx} \\ &= 2x\arctan{(x)} - 2\int{\arctan{(x)}\,dx} \end{align*}[/math]

Now equating these gives

[math]\displaystyle \begin{align*} \ln{ \left( 1 + x^2 \right) } &= 2x\arctan{(x)} - 2\int{\arctan{(x)}\,dx} \\ 2\int{\arctan{(x)}\,dx} &= 2x\arctan{(x)} - \ln{ \left( 1 + x^2 \right) } \\ \int{\arctan{(x)}\,dx} &= x\arctan{(x)} - \frac{1}{2}\ln{\left( 1 + x^2 \right) } + C \end{align*}[/math]

Q.E.D.
 
Physics news on Phys.org
http://www.mathhelpboards.com/f9/favorite-old-threads-best-math-thread-1-a-424/: solve a DE in order to compute an integral!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K