MHB Interesting ways to evaluate integrals

Click For Summary
The discussion explores various methods for evaluating the integral of arctangent, specifically \int{\arctan{(x)}\,dx}. One method involves a substitution that simplifies the integral to \int{\frac{2x}{1 + x^2}\,dx}, which leads to the result \ln{(1 + x^2)}. Another approach uses integration by parts, resulting in an equation that relates the integral of arctangent to other functions. Ultimately, both methods yield the same final expression for the integral, demonstrating the versatility of techniques in integral calculus. The thread highlights the creativity involved in finding different solutions to the same problem.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Hi everyone. Just for fun I thought we could post some of the more interesting ways we know of to evaluate integrals :)

For starters, to evaluate [math]\displaystyle \begin{align*} \int{\arctan{(x)}\,dx} \end{align*}[/math], first we consider the integral [math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} \end{align*}[/math]. For simplicity, we'll leave out integration constants til the end...

We can integrate this using a substitution [math]\displaystyle \begin{align*} u = 1 + x^2 \implies du = 2x\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} &= \int{\frac{1}{u}\,du} \\ &= \ln{|u|} + C \\ &= \ln{ \left| 1 + x^2 \right| } + C \\ &= \ln{ \left( 1 + x^2 \right) } \textrm{ since } 1 + x^2 > 0 \textrm{ for all } x \in \mathbf{R} \end{align*}[/math]

Now supposing we wanted to evaluate the integral in a different way, using integration by parts with [math]\displaystyle \begin{align*} u = 2x \implies du = 2\,dx \end{align*}[/math] and [math]\displaystyle \begin{align*} dv = \frac{1}{1 + x^2}\,dx \implies v = \arctan{(x)} \end{align*}[/math], then we would have

[math]\displaystyle \begin{align*} \int{\frac{2x}{1 + x^2}\,dx} &= \int{2x \left( \frac{1}{1 + x^2} \right) dx} \\ &= 2x\arctan{(x)} - \int{2\arctan{(x)}\,dx} \\ &= 2x\arctan{(x)} - 2\int{\arctan{(x)}\,dx} \end{align*}[/math]

Now equating these gives

[math]\displaystyle \begin{align*} \ln{ \left( 1 + x^2 \right) } &= 2x\arctan{(x)} - 2\int{\arctan{(x)}\,dx} \\ 2\int{\arctan{(x)}\,dx} &= 2x\arctan{(x)} - \ln{ \left( 1 + x^2 \right) } \\ \int{\arctan{(x)}\,dx} &= x\arctan{(x)} - \frac{1}{2}\ln{\left( 1 + x^2 \right) } + C \end{align*}[/math]

Q.E.D.
 
Physics news on Phys.org
http://www.mathhelpboards.com/f9/favorite-old-threads-best-math-thread-1-a-424/: solve a DE in order to compute an integral!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K