1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Interference term in Bhabha scattering

  1. May 31, 2008 #1
    Hi guys...I am trying the problem 5.2 from Peskin to calculate cross section for Bhabha scattering. In the interference (cross) term, I'm getting a term involving trace of 8 gamma matrices and I am having some trouble in evaluating it. So can anyone help???

    The term is Tr[[tex]\displaystyle{\not}p'\gamma^{\nu}\displaystyle{\not}k'\gamma^{\mu}\displaystyle{\not}k\gamma_{\nu}\displaystyle{\not}p\gamma_{\mu}[/tex]]
    (here first two momenta are p' and k')
  2. jcsd
  3. Aug 15, 2008 #2
    You can use some contraction identity (Peskin p. 805):
    -2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu} [/tex]
    4 g^{\nu \rho} [/tex].
    Your term is:
    [tex]Tr[ \gamma^{\delta}\gamma^{\nu}\gamma^{\alpha}\gamma^{\mu}\gamma^{\beta} \gamma_{\nu}\gamma^{\gamma}\gamma_{\mu}k'_{\alpha}k_{\beta}p_{\gamma}p'_{\delta}
    ]=-2Tr[ \gamma^{\delta}\gamma^{\beta}\gamma^{\mu}\gamma^{\alpha} \gamma^{\gamma}\gamma_{\mu}k'_{\alpha}k_{\beta}p_{\gamma}p'_{\delta}]
    [tex]=-8Tr[ \gamma^{\delta}\gamma^{\beta}k_{\beta}p'_{\delta}(k' \cdot p)
    ] =-32(k'\cdot p) (k\cdot p') [/tex]
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Interference term in Bhabha scattering
  1. Bhabha scattering (Replies: 1)

  2. Bhabha scattering (Replies: 0)

  3. Double scattering (Replies: 2)