MHB Internal angle sum of triangle

AI Thread Summary
The discussion focuses on proving the inequality related to the internal angle sum of triangle ABC, specifically that IAS(ABC) < θ + φ + ψ < 540 - IAS(ABC). The user is tasked with applying the external angle inequality within the context of absolute geometry, where the sum of angles in a triangle does not equal 180 degrees. By analyzing triangles ABE, ADC, and AFC, the user derives relationships between the angles and their respective measures. The key inequalities are established through the addition of angles from these triangles, leading to the desired proof. The conversation highlights the complexity of the problem and the need for careful geometric reasoning.
bonfire09
Messages
247
Reaction score
0
Problem: Let A, B, C be three non-collinear points. Let D, E, F be points on the respective interiors of segments BC, AC and AB. Let θ, φ and ψ be the measures of the respective angles ∠BFC, ∠CDA and ∠AEB. Prove IAS(ABC) < θ +φ + ψ < 540 - IAS(ABC).(IAS means internal angle sum). Now I am supposed to use the external angle inequality which is the measure of an exterior angle of a triangle is greater than that of either opposite interior angle. Not sure how to do it. I've been struggling for hours with it. Oh i forgot to mention this is still in absolute geometry so we can't use that the the angles of a triangle add up to 180*.
 

Attachments

  • triangle.jpg
    triangle.jpg
    9.5 KB · Views: 91
Mathematics news on Phys.org
consider the following triangles,

$\Delta ABE$,
$$\psi =180-\left[{A}+({B}-r)\right]\qquad (1)$$
$\Delta ADC$,
$$\varphi = 180-\left[{C}+({A}-q)\right]\qquad (2)$$
$\Delta ABE$,
$$\theta = 180-\left[{B}+({C}-p)\right]\qquad (3)$$

Adding (1),(2),(3) together,

$$\psi+\varphi+\theta=540-(A+B+C)-\underbrace{[(A-q)+(B-r)+(C-p)]}_{>0}$$
you can derive one inequality from this

then,
from $\Delta ABD$
$$B+q=\varphi \qquad (4)$$
from $\Delta AFC$
$$A+p=\theta\qquad (5)$$
from $\Delta BCE$
$$C+r=\psi\qquad (6)$$

adding (4),(5),(6) together,
$$(A+B+C)+\underbrace{(p+q+r)}_{>0}=\varphi+\theta+\psi$$

from this you can get the other inequiality
 

Attachments

  • triangle.jpg
    triangle.jpg
    10.2 KB · Views: 106
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top