MHB Interpreting of another proposition full of symbols

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Symbols
kalish1
Messages
79
Reaction score
0
Could someone help me interpret the following proposition full of symbols? I've been struggling to comprehend it as well. Thanks in advance.

Proposition: Suppose that $f:\mathbb{R^n} \rightarrow \mathbb{R^n}, g:\mathbb{R^n} \rightarrow \mathbb{R}$ is a positive function, and $\phi$ is the flow of the differential equation $\dot{x}=f(x)$. If the family of solutions of the family of initial value problems $$\dot{y} = g(\phi(y,\xi)),$$ $$y(0)=0,$$ with parameter $\xi \in \mathbb{R^n}$, is given by $\rho: \mathbb{R} \times \mathbb{R^n} \rightarrow \mathbb{R}$, then $\psi$, defined by $\psi(t,\xi)=\phi(\rho(t,\xi),\xi)$ is the flow of the differential equation $\dot{x}=g(x)f(x)$.

I have crossposted this here as well: differential equations - Interpreting another proposition full of symbols - Mathematics Stack Exchange
 
Physics news on Phys.org
kalish said:
Could someone help me interpret the following proposition full of symbols? I've been struggling to comprehend it as well. Thanks in advance.

Proposition: Suppose that $f:\mathbb{R^n} \rightarrow \mathbb{R^n}, g:\mathbb{R^n} \rightarrow \mathbb{R}$ is a positive function,
f is a function that maps n real variables to a value of n ordered numbers (OR f maps an n dimensional vector to an n dimensional vector). g is a function that maps n real variables to a single positive number (OR g maps an n dimensional vector to a single number).

and $\phi$ is the flow of the differential equation $\dot{x}=f(x)$.
\phi is the general solution to the differential equation. Note that the equation can be thought of as a set of n interrelated differential equations.

If the family of solutions of the family of initial value problems $$\dot{y} = g(\phi(y,\xi)),$$ $$y(0)=0,$$ with parameter $\xi \in \mathbb{R^n}$, is given by $\rho: \mathbb{R} \times \mathbb{R^n} \rightarrow \mathbb{R}$, then $\psi$, defined by $\psi(t,\xi)=\phi(\rho(t,\xi),\xi)$ is the flow of the differential equation $\dot{x}=g(x)f(x)$.

I have crossposted this here as well: differential equations - Interpreting another proposition full of symbols - Mathematics Stack Exchange
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

Replies
1
Views
8K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
385
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K