MHB Intersection of Sets A, B and C in ℤ

  • Thread starter Thread starter fatineouahbi
  • Start date Start date
  • Tags Tags
    Intersection Sets
AI Thread Summary
The discussion focuses on proving that the intersection of sets A and B equals set C, where A, B, and C are defined by specific integer equations. It begins by establishing that an element x in A ∩ B can be expressed as both 11k + 8 and 4k', leading to the conclusion that 4 divides 11k. Since 4 and 11 are relatively prime, it follows that k must be a multiple of 4, allowing for the substitution into the equation to show x belongs to C. The reverse inclusion is also demonstrated, confirming that elements of C can be expressed in terms of A and B. Ultimately, the proof establishes that A ∩ B = C, validating the relationship among the three sets.
fatineouahbi
Messages
10
Reaction score
0
Let A,B,C be three sets such that :

A={x∈ ℤ / x=11k+8 , k∈ℤ}
B={x∈ ℤ / x=4k , k∈ℤ}
C={x∈ ℤ / x=11(4k+1) -3 , k∈ℤ }

Prove A⋂B = C


I started with this :
Let x be an arbitrary element of A⋂B
then ∃(k,k')∈ ℤ² such that x=11k+8 and x=4k'
then 11k+8 = 4k'
then 11(k+1)-3 = 4k'

I don't know where to go from this
 
Mathematics news on Phys.org
Hi fatineouahbi,

Since $11k + 8 = 4k'$, then $11k = 4k' - 8$, or $11k = 4(k'-2)$. Hence, $4$ divides $11 k$. As $4$ and $11$ are relatively prime, $4$ divides $k$. So $k = 4u$ for some integer $u$. Now we have $x = 11k + 8 = 11(4u) + 8 = 11(4u + 1) - 3\in C$, showing that $A\cap B \subset C$.

To prove $A\cap B \subset C$, let $x\in C$. Then $x = 11(4k + 1) - 3$ for some integer $k$. Since $11(4k + 1) - 3 = 11(4k) + 8$, then $x\in A$. As $11(4k + 1) - 3 = 11(4k) + 8 = 4(11k) + 4(2) = 4(11k + 2)$, we have $x\in B$. Therefore, $x\in A\cap B$. Consequently, $C\subset A\cap B$.
 
Thank you !
 
Last edited:
Another way: 11k+ 8= 4k' is the same as 4k'- 11k= 8, a "linear Diophantine equation" which can be solved using "Euclid's algorithm":

4 divides into 11 twice with remainder 3: 11- 2(4)= 3.
3 divides into 4 once with remainder 1: 4- 3= 1.
Replace that "3" with 11- 2(4). 4- (11- 2(4))= 3(4)- 1(11)= 1.
Multiplying by 8, 24(4)- 8(11)= 8.

So one solution is k'= 24, k= 8. In fact, all values k'= 24+ 11n, k= 8+ 4n, for n any integer, is also a solution:
4(24+ 11n)- 11(8+ 4n)= 96+ 44n- 88- 44n= 96- 88= 8.

Members of the set are of the form x= 4k'= 96+ 44n for n any integer.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top