- #1
fishturtle1
- 394
- 82
Homework Statement
Assume all ##s_n \neq 0## and that the limit ##L = \lim \vert \frac{s_{n+1}}{s_n} \vert ## exists.
a) Show that if ##L < 1##, then ##\lim s_n = 0##. (Hint: Select ##a## so that ##L < a < 1## and obtain ##N## s.t. ##\vert s_{n+1} \vert < a \vert s_n \vert## for ##n \ge N##. Then show ##\vert s_n \vert < a^{n - N} \vert s_N \vert## for ##n > N## ).
Homework Equations
Limit laws for addition/multiplication/scalar
The Attempt at a Solution
Proof of hint:
Let ##\varepsilon_1 = \frac{1 - L}{2}## and select ##a = L + \varepsilon_1##.
Then ##L < a < 1##.
Consider 3 cases:
Case 1: ##L < 1##. Then ##\varepsilon_1 > 0##.
By definition, for all ##\varepsilon > 0## there exists ##N## such that ##n > N## implies ##\vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon##. By triangle inequality and substitution, we have ##\vert \frac{s_{n+1}}{s_n} \vert - \vert L \vert \le \vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon_1##. So ##\frac{\vert s_{n+1} \vert}{\vert s_n \vert} < \varepsilon_1 + \vert L \vert = \varepsilon_1 + L = a##. Multiplying both sides by ##\vert s_n \vert## we get ##\vert s_{n+1} \vert < \vert s_n \vert a##.
Case 2: ##L > 1##. Then ##\varepsilon_1 < 0##. ...
Case 3: ##L = 1##. Then ##\varepsilon_1 = 0## ... So now i can't substitute for ##\varepsilon > 0## in the limit definition ...
I am asking for advice on how to proceed, please.