Intro. to Differential Equations

Click For Summary
The discussion focuses on introducing Differential Equations, specifically referencing the textbook "Elementary Differential Equations and Boundary Value Problems" by Boyce and DiPrima. The author, a student, aims to learn by explaining concepts, starting with definitions and classifications of differential equations, including Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE). Key topics include linear and nonlinear equations, integrating factors, and examples of first-order differential equations. The thread encourages participation for questions and corrections, highlighting the collaborative nature of learning in mathematics. Overall, it serves as a platform for students to engage with differential equations and enhance their understanding.
  • #91
Erfan said:
I had to solve a first-order nonlinear ODE which led me to a this equation.how can I find the solution for y?
yey=f(x)
Where are the derivatives, e.g., y', or differentials?
 
  • Like
Likes Z_Lea7
Physics news on Phys.org
  • #92
Erfan said:
I had to solve a first-order nonlinear ODE which led me to a this equation.how can I find the solution for y?
yey=f(x)
"Lambert's W function", W(x), is defined as the inverse function to f(x)= xex. Taking the W function of both sides gives y= W(f(x)).
 
  • #93
So the question should be solved numerically using the Lambert's W function? I mean that can't we then have a function in the form: y=f(x)? or we can no more go further than the Lambert's W function?
 
  • #94
Greg Bernhardt said:
Sounds great! Tutorials like this have been very successful here.

Howto make math symbols:
https://www.physicsforums.com/announcement.php?forumid=73

You can make subscripts and subscripts by using these tags

[ sup ] content [ /sup ]
[ sub ] content [ /sub ]

* no spaces

Mathematicians,
i need an insight and understanding of asymptotic behaviour as applied to singular cauchy problem...anyone can comment...
ken chwala BSC MATHS, MSC APPLIED MATHS FINALIST
 
Last edited by a moderator:
  • #95
good job
 
  • #96
Good night,


Last week I begun to study differential equations by my own and first saw ODE's of separable variables. I've learned very well what they are and how to find constant and non-constant solutions. But something extremely trivial is boring me: I can't figure out why some ODE is or is not of separable variable. For example, I know that an ODE of s.v. is an ODE of the type

[; \frac{dx}{dt} = g(t)h(x) ;]​

but I simply cannot say why

[; \frac{dy}{dx}=\frac{y}{x} ;]​

is and ODE of s.v. and why

[; \frac{dy}{dx}=\frac{x+y}{x^2 +1} ;]​

is not.

I know this is very trivial and I am missing something, but I don't know what. Can you help me, please? :-)


[]'s!

Ps.: sorry for my lousy English.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
975
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K