Intro. to Differential Equations

Click For Summary
SUMMARY

This discussion focuses on the fundamentals of Differential Equations, specifically using "Elementary Differential Equations and Boundary Value Problems: Seventh Edition" by William E. Boyce and Richard C. DiPrima as a primary resource. Key topics include classifications of Differential Equations into Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE), along with their linear and nonlinear forms. The conversation also addresses methods for solving first-order linear equations and the use of integrating factors. Participants share insights and examples, enhancing the understanding of these mathematical concepts.

PREREQUISITES
  • Understanding of Calculus concepts, particularly derivatives
  • Familiarity with Ordinary Differential Equations (ODE)
  • Knowledge of Partial Differential Equations (PDE)
  • Basic skills in mathematical notation and manipulation
NEXT STEPS
  • Study the methods for solving Ordinary Differential Equations (ODE) using integrating factors
  • Explore Partial Differential Equations (PDE) and their applications
  • Learn about the classification of Differential Equations and their properties
  • Practice solving first-order linear equations and nonlinear equations
USEFUL FOR

Students and educators in mathematics, particularly those studying or teaching Differential Equations, as well as professionals in fields requiring mathematical modeling and analysis.

  • #91
Erfan said:
I had to solve a first-order nonlinear ODE which led me to a this equation.how can I find the solution for y?
yey=f(x)
Where are the derivatives, e.g., y', or differentials?
 
  • Like
Likes   Reactions: Z_Lea7
Physics news on Phys.org
  • #92
Erfan said:
I had to solve a first-order nonlinear ODE which led me to a this equation.how can I find the solution for y?
yey=f(x)
"Lambert's W function", W(x), is defined as the inverse function to f(x)= xex. Taking the W function of both sides gives y= W(f(x)).
 
  • #93
So the question should be solved numerically using the Lambert's W function? I mean that can't we then have a function in the form: y=f(x)? or we can no more go further than the Lambert's W function?
 
  • #94
Greg Bernhardt said:
Sounds great! Tutorials like this have been very successful here.

Howto make math symbols:
https://www.physicsforums.com/announcement.php?forumid=73

You can make subscripts and subscripts by using these tags

[ sup ] content [ /sup ]
[ sub ] content [ /sub ]

* no spaces

Mathematicians,
i need an insight and understanding of asymptotic behaviour as applied to singular cauchy problem...anyone can comment...
ken chwala BSC MATHS, MSC APPLIED MATHS FINALIST
 
Last edited by a moderator:
  • #95
good job
 
  • #96
Good night,


Last week I begun to study differential equations by my own and first saw ODE's of separable variables. I've learned very well what they are and how to find constant and non-constant solutions. But something extremely trivial is boring me: I can't figure out why some ODE is or is not of separable variable. For example, I know that an ODE of s.v. is an ODE of the type

[; \frac{dx}{dt} = g(t)h(x) ;]​

but I simply cannot say why

[; \frac{dy}{dx}=\frac{y}{x} ;]​

is and ODE of s.v. and why

[; \frac{dy}{dx}=\frac{x+y}{x^2 +1} ;]​

is not.

I know this is very trivial and I am missing something, but I don't know what. Can you help me, please? :-)


[]'s!

Ps.: sorry for my lousy English.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K