[IntroNumTheory] Determining the remainder by using congruence

  • Thread starter Thread starter Leo Liu
  • Start date Start date
  • Tags Tags
    Remainder
Leo Liu
Messages
353
Reaction score
156
Homework Statement
.
Relevant Equations
.
https://www.physicsforums.com/attachments/292386

I need to use the congruence to solve this question. My strategy is to write the question as a congruence and then simplify the congruence so that I can apply Congruence to remainder to get the remainder. My work is as follows:
We know that
##453\equiv 53 (mod\, 100)##
Thus,
##453^{234}\equiv 53^{234} (mod\, 100)## by Congruence Power.
Also since
##53^2\equiv 9 (mod\, 100)##,
##53^234\equiv 9^{117} (mod\, 100)##.
So by the transitivity property, we have
##453^{234}\equiv 3^{234} (mod\, 100)##
But I am stuck here. Can someone help me out, please?
 
Physics news on Phys.org
Why not do powers of 3 on a calculator (or better on a spreadsheet) until something low modulo 100 appears?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top