FOIWATER
Gold Member
- 434
- 12
I always have made use of laplace transforms to integrate differential equations and solve them in less hastle. In terms of what it physically means, the relationship before the laplace transform is where the real intuition would lie, but then if we take this intuition - take the infinite sum of the function from zero to infinity, the intuition about the initial problem still exists. If we take the inverse laplace, the simplifications we make in that domain are perfectly valid. I agree with yungman (not to put words in his mouth, but,) it's best described as a "reality" in terms of mathematics.