Invariance of a volume element in phase space, What does it mean?

Maumas
Messages
1
Reaction score
0
Homework Statement
I have been reading the third edition of Classical Mechanics by Goldstein, in particular, chapter 9 Poisson Brackets and Other canonical invariants. And it is shown that the magnitude of a volume element is invariant. I can understand what it means mathematically, but what physical implications does it have?

I have been reading similar questions and noticed that this invariance is related to Liouville’s Theorem. But I do not understand the underlying physics.

Maybe someone can shed light on this issue
Relevant Equations
.
The invariance of this volume element is shown by writing the infinitesimal volume elements $$d\eta$$ and $$d\rho$$

$$d\eta=dq_1.....dq_ndp_1......dp_n$$

$$d\rho=dQ_1.......dQ_ndP_1....dP_n$$

and we know that both of them are related to each other by the absolute value of the determinant of the Jacobian matrix. So I do understand that if we have a canonical transformation $$d\eta=|M|d\rho$$ is $$d\eta=d\rho$$ but i do not know what it means physically.
 
Last edited:
Physics news on Phys.org
Maumas said:
but what physical implications does it have?
A phase flow of a Hamiltonian system consists of canonical transformations. Now see the Poincare recurrence theorem.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top