MHB Inverse Functions and "Verifying"

Click For Summary
The inverse function provided, f^-1(x) = (-x-1)/(3x-2), is verified correctly using substitution, confirming that f(f^-1(x)) = x. The method for verifying f^-1(f(x)) is also accurate, as substituting f(x) into the inverse function yields x. For the second question, the derivation of t = -a*ln(1-(Q/Qo)) is correct, and the calculation for t when Q/Qo = 0.9 results in 4.6 seconds to recharge the battery. Overall, the solutions presented are validated and correct.
ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_4.jpg


Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.
 
Mathematics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.

The inverse function is correct!

To verify that $f(f^{-1}(x)) = x$ :

$$f(f^{-1}(x))=f \left ( \frac{-x-1}{3x-2} \right )=\frac{2 \left (\frac{-x-1}{3x-2} \right )-1}{3\left (\frac{-x-1}{3x-2} \right )+1}=\frac{\frac{-2x-2-3x+2}{3x-2}}{\frac{-3x-3+3x-2}{3x-2}}=\frac{\frac{-5x}{3x-2}}{\frac{-5}{3x-2}}=\frac{-5x}{-5}=x$$

To verify that $f^{-1} (f(x)) = x$ :

$$f^{-1} (f(x))=f^{-1} \left ( \frac{2x-1}{3x+1} \right )=\frac{-\left ( \frac{2x-1}{3x+1} \right )-1}{3\left ( \frac{2x-1}{3x+1} \right )-2}=\frac{\frac{-2x+1-3x-1}{3x+1}}{\frac{6x-3-6x-2}{3x+1}}=\frac{-5x}{-5}=x$$As for the second exercise:

$$Q(t)=Q_0 \left (1-e^{-\frac{t}{a}} \right ) \Rightarrow \frac{Q(t)}{Q_0}=1-e^{-\frac{t}{a}} \Rightarrow e^{-\frac{t}{a}}=1-\frac{Q(t)}{Q_0} \Rightarrow -\frac{t}{a}=\ln{ \left | 1-\frac{Q(t)}{Q_0} \right |} \\ \Rightarrow t=-a \cdot \ln{ \left | 1-\frac{Q(t)}{Q_0} \right |}$$

Your solution for the question $2b$ seems correct to me!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K