MHB Inverse Functions and "Verifying"

ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_4.jpg


Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.
 
Mathematics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.

The inverse function is correct!

To verify that $f(f^{-1}(x)) = x$ :

$$f(f^{-1}(x))=f \left ( \frac{-x-1}{3x-2} \right )=\frac{2 \left (\frac{-x-1}{3x-2} \right )-1}{3\left (\frac{-x-1}{3x-2} \right )+1}=\frac{\frac{-2x-2-3x+2}{3x-2}}{\frac{-3x-3+3x-2}{3x-2}}=\frac{\frac{-5x}{3x-2}}{\frac{-5}{3x-2}}=\frac{-5x}{-5}=x$$

To verify that $f^{-1} (f(x)) = x$ :

$$f^{-1} (f(x))=f^{-1} \left ( \frac{2x-1}{3x+1} \right )=\frac{-\left ( \frac{2x-1}{3x+1} \right )-1}{3\left ( \frac{2x-1}{3x+1} \right )-2}=\frac{\frac{-2x+1-3x-1}{3x+1}}{\frac{6x-3-6x-2}{3x+1}}=\frac{-5x}{-5}=x$$As for the second exercise:

$$Q(t)=Q_0 \left (1-e^{-\frac{t}{a}} \right ) \Rightarrow \frac{Q(t)}{Q_0}=1-e^{-\frac{t}{a}} \Rightarrow e^{-\frac{t}{a}}=1-\frac{Q(t)}{Q_0} \Rightarrow -\frac{t}{a}=\ln{ \left | 1-\frac{Q(t)}{Q_0} \right |} \\ \Rightarrow t=-a \cdot \ln{ \left | 1-\frac{Q(t)}{Q_0} \right |}$$

Your solution for the question $2b$ seems correct to me!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top