MHB Inverse Functions and "Verifying"

AI Thread Summary
The inverse function provided, f^-1(x) = (-x-1)/(3x-2), is verified correctly using substitution, confirming that f(f^-1(x)) = x. The method for verifying f^-1(f(x)) is also accurate, as substituting f(x) into the inverse function yields x. For the second question, the derivation of t = -a*ln(1-(Q/Qo)) is correct, and the calculation for t when Q/Qo = 0.9 results in 4.6 seconds to recharge the battery. Overall, the solutions presented are validated and correct.
ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_4.jpg


Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.
 
Mathematics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:Alright, I'm having quite a bit of trouble with these. So here it goes:

For the first one, I did the 3-step procedure to finding the inverse: write y=f(x), solve for x and y, then interchange variables. Ultimately, this gave me: f^-1(x) = (-x-1)/(3x-2)

And to verify, I just used substitution since f(f^-1(x)) = x:

(2+3)/(6/1) = (2+3)/(6/1) [Is this even remotely correct? I just substituted the corresponding values.]

As for verifying "f^-1 (f(x)) = x, I have no idea how to go about doing this. Do I just substituted the original function in the left hand side into the inverse function?

As for the second question, for 2a, I got t= -a*ln(1-(Q/Qo)) by switching variables to get the inverse and solving for t.

As for question 2b, I assumed that Q/Qo = 0.9 for 90%. Therefore, since a=2, I could substitute that value into the function, giving me:

t= -2ln(1-0.9)
t= 4.6 seconds needed to recharge the battery to 90%.

Any help is much appreciated.

Thanks in advance.

The inverse function is correct!

To verify that $f(f^{-1}(x)) = x$ :

$$f(f^{-1}(x))=f \left ( \frac{-x-1}{3x-2} \right )=\frac{2 \left (\frac{-x-1}{3x-2} \right )-1}{3\left (\frac{-x-1}{3x-2} \right )+1}=\frac{\frac{-2x-2-3x+2}{3x-2}}{\frac{-3x-3+3x-2}{3x-2}}=\frac{\frac{-5x}{3x-2}}{\frac{-5}{3x-2}}=\frac{-5x}{-5}=x$$

To verify that $f^{-1} (f(x)) = x$ :

$$f^{-1} (f(x))=f^{-1} \left ( \frac{2x-1}{3x+1} \right )=\frac{-\left ( \frac{2x-1}{3x+1} \right )-1}{3\left ( \frac{2x-1}{3x+1} \right )-2}=\frac{\frac{-2x+1-3x-1}{3x+1}}{\frac{6x-3-6x-2}{3x+1}}=\frac{-5x}{-5}=x$$As for the second exercise:

$$Q(t)=Q_0 \left (1-e^{-\frac{t}{a}} \right ) \Rightarrow \frac{Q(t)}{Q_0}=1-e^{-\frac{t}{a}} \Rightarrow e^{-\frac{t}{a}}=1-\frac{Q(t)}{Q_0} \Rightarrow -\frac{t}{a}=\ln{ \left | 1-\frac{Q(t)}{Q_0} \right |} \\ \Rightarrow t=-a \cdot \ln{ \left | 1-\frac{Q(t)}{Q_0} \right |}$$

Your solution for the question $2b$ seems correct to me!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top