Alternatively, following the suggestion made by
@Paul Colby. Note,
\begin{align*}
\Gamma(s)=\frac{1}{s}\Gamma(s+1)=\frac{1}{s(s+1)}\Gamma(s+2)=\frac{1}{s(s+1)(s+2) \cdots (s+n)}\Gamma(s+n+1)
\end{align*}
What does that tell us about the poles of ##\Gamma (s)^2##?
Here are useful formula for working out the residues at the poles:
\begin{align*}
\Gamma (s) = \frac{\Gamma (s+n+1)}{s(s+1) \cdots (s+n)} \quad \text{and} \quad \psi (s) = \frac{\Gamma' (s)}{\Gamma (s)} = -\gamma + \sum_{k=0}^\infty (\frac{1}{k+1} - \frac{1}{k+s})
\end{align*}
where ##\psi (s)## is the digamma function and ##\gamma## is Euler–Mascheroni constant.
Consider the rectangular contour ##\mathcal{C}## with vertices ##c \pm iR## (##c > 0##) and ##−(N + 1/2) \pm iR##, where ##N## is a positive integer. Then the poles of ##\Gamma(s)^2## inside this contour are at ##0, −1, −2, . . . , −N##. Hence, Cauchy’s residue theorem implies that
\begin{align*}
\frac{1}{2 \pi i} \oint_\mathcal{C} x^{-s} \Gamma (s)^2 ds = \sum_{n=0}^N Res (x ^{−s} \Gamma (s)^2 ,s=−n)
\end{align*}
Let ##R## and ##N## tend to infinity. You need to show that the Stirling's asymptotic formula for the Gamma function squared:
\begin{align*}
\Gamma (s)^2 = \lim_{|s| \rightarrow \infty} \frac{2 \pi}{s} s^{2s} e^{-2s}
\end{align*}
implies the integral on ##\mathcal{C}## minus the line joining ##c − iR## and ##c + iR## tends to zero.
You then obtain a series expansion for ##F(x)## closely related to that of a special function.