MHB Invertible Matrices: Why These Statements Are Not Correct

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrices
Yankel
Messages
390
Reaction score
0
I have one more question, I have two matrices A and B, both squared and with the same order. And I have a scalar, a not equal to zero.

why are these statements not correct ?

1. If A and B are invertible, then
a\cdot (B^{-1}A^{-1}B)^{^{t}}
is not necessarily invertible

2. If A and B are invertible, then
a\cdot (A+B)
is not necessarily invertible, but if it is, it's inverse is the matrix
\frac{1}{a}\cdot (A^{-1}+B^{-1})

Thanks...
 
Physics news on Phys.org
Yankel said:
I have one more question, I have two matrices A and B, both squared and with the same order. And I have a scalar, a not equal to zero.

why are these statements not correct ?

1. If A and B are invertible, then
a\cdot (B^{-1}A^{-1}B)^{^{t}}
is not necessarily invertible

2. If A and B are invertible, then
a\cdot (A+B)
is not necessarily invertible, but if it is, it's inverse is the matrix
\frac{1}{a}\cdot (A^{-1}+B^{-1})

Thanks...

For the first one, I'm going to assume WLOG that $A$ and $B$ are $n\times n$ matrices. if $A$ and $B$ are invertible, then $\det(A)\neq 0$ and $\det(B)\neq 0$. Furthermore, if $a\neq 0$ is a scalar, then
\[\det (a\cdot(B^{-1}A^{-1}B)^t)=a^n\det((B^{-1}A^{-1}B)^t) = a^n \det(B^{-1}A^{-1}B)=\frac{a^n\det(B)}{\det(B)\det(A)}=\frac{a^n}{\det(A)}.\]
This tells me that we'll always have $a\cdot(B^{-1}A^{-1}B)^t$ invertible provided that $A$ and $B$ are invertible with a scalar $a\neq 0$.

For the second one, it's true that if $A$ and $B$ are invertible, it may so happen that $a\cdot (A+B)$ isn't invertible. For instance, take $A=I$, $B=-I$ and $a=1$, where $I$ is the identity matrix. Then both matrices are invertible, but $A+B=O$, where $O$ is the zero matrix, which is clearly not invertible.

If $a\cdot(A+B)$ was invertible, then it wouldn't have that form for the inverse. We can see this is the case since
\[\left(a\cdot(A+B)\right)\left(\frac{1}{a}\cdot(A^{-1}+B^{-1})\right)=AB^{-1}+BA^{-1}+2I\neq I\]I hope this helps!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top