MHB Investigating Inconsistencies in Strogatz's Nonlinear Dynamics Book

Click For Summary
Strogatz's Nonlinear Dynamics book claims that the average of sin raised to an even power can be expressed as a specific fraction involving products of odd and even integers. However, a discrepancy arises with the calculation of \(\langle\sin^6\rangle\), where it appears that \(\frac{5}{16}\) does not equal \(\frac{15}{48}\), leading to confusion over the equality of fractions. A participant points out that the negative result obtained from a method involving complex exponentials suggests a missing imaginary unit in the denominator. The discussion also touches on the definition of the inner product in the context of real functions, emphasizing the integration method used to derive the average value. The conversation highlights the need for clarity in mathematical proofs and definitions.
Dustinsfl
Messages
2,217
Reaction score
5
Strogatz's Nonlinear and Dynamics book states that
$$
\langle\sin^{2n}\rangle = \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n}
$$
for $n\geq 1$.
However, $\langle\sin^6\rangle = \frac{5}{16}\neq\frac{15}{48}$.

What is the deal here?
 
Last edited:
Physics news on Phys.org
dwsmith said:
Strogatz's Nonlinear and Dynamics book states that
$$
\langle\sin^{2n}\rangle = \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n}
$$
for $n\geq 1$.
However, $\langle\sin^6\rangle = \frac{5}{16}\neq\frac{15}{48}$.

What is the deal here?
Ummm...
\frac{5}{16} = \frac{15}{48}

Or do we need numerator and denominator to be relatively prime? In that case they are not "equal"?

-Dan
 
topsquark said:
Ummm...
\frac{5}{16} = \frac{15}{48}

Or do we need numerator and denominator to be relatively prime? In that case they are not "equal"?

-Dan

I apparently can't do math.
 
So I looked at
$$
\left\langle\left(\frac{e^{ix}-e^{-ix}}{2}\right)^6\right\rangle = -\frac{5}{16}
$$
The rest is zero due the inner product. So why am I getting a negative with this method when it should be a positive?
 
dwsmith said:
So I looked at
$$
\left\langle\left(\frac{e^{ix}-e^{-ix}}{2}\right)^6\right\rangle = -\frac{5}{16}
$$
The rest is zero due the inner product. So why am I getting a negative with this method when it should be a positive?

Hi dwsmith, :)

Well I think you are missing the imaginary unit that should be in the denominator.

\[\sin{x}=\frac{e^{ix}-e^{-ix}}{2i}\]

Kind Regards,
Sudharaka.
 
dwsmith said:
Strogatz's Nonlinear and Dynamics book states that
$$
\langle\sin^{2n}\rangle = \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n}
$$
for $n\geq 1$.

How is this proved?
 
dwsmith said:
Strogatz's Nonlinear and Dynamics book states that
$$
\langle\sin^{2n}\rangle = \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n}
$$

for $n\geq 1$...

How is this proved?...

First it is usefule to discuss a bit about what You mean as 'inner product'. According to...

Inner Product -- from Wolfram MathWorld

... in the space of real functions the 'inner product' of two functions f(*) and g(*) is defined as...

$\displaystyle \langle f(x) , g(x) \rangle = \int_{a}^{b} f(x)\ g(x)\ dx$ (1)

In the case of $f(x)=g(x)= \sin^{n} x$, $a=0$ and $b=\frac{\pi}{2}$ is...

$\displaystyle \langle f(x) , g(x) \rangle = \int_{0}^{\frac{\pi}{2}} \sin^{2 n} x\ dx = \frac{ 1\cdot 3\cdot 5\ ...\ (2n-1)}{2\cdot 4\cdot 6\ ...\ 2n}\ \frac{\pi}{2}$ (2)

You arrive at (2) using iteratively the integration by part...

$\displaystyle \int \sin^{m} x\ dx = - \frac{\sin^{m-1} x \cos x}{n} + \frac{m-1}{m}\ \int \sin^{m-1} x\ dx$ (3)

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K