Investigations into the infinitesimal Lorentz transformation

Click For Summary
SUMMARY

The forum discussion focuses on the properties of Lorentz transformations, specifically how they preserve the Minkowski metric ##\eta_{\mu\nu}##. It establishes that the condition ##\eta_{\mu\nu} = \eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}## holds true for Lorentz transformations. The discussion also demonstrates that an infinitesimal transformation of the form ##{\Lambda^{\mu}}_{\nu}={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}## is a Lorentz transformation when ##\omega^{\mu\nu}## is antisymmetric. Additionally, it provides matrix forms for infinitesimal rotations and boosts along specified axes.

PREREQUISITES
  • Understanding of Minkowski metric ##\eta_{\mu\nu}##
  • Familiarity with Lorentz transformations and their properties
  • Knowledge of antisymmetric matrices and their implications
  • Basic concepts of rotations and boosts in special relativity
NEXT STEPS
  • Study the derivation of the Lorentz transformation equations in detail
  • Learn about the implications of antisymmetry in tensor calculus
  • Explore the geometric interpretations of rotations and boosts in Minkowski space
  • Investigate the role of the Lorentz group in the framework of special relativity
USEFUL FOR

Physicists, mathematicians, and students studying special relativity, particularly those interested in the mathematical foundations of Lorentz transformations and their applications in theoretical physics.

spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement


[/B]
A Lorentz transformation ##x^{\mu} \rightarrow x'^{\mu} = {\Lambda^{\mu}}_{\nu}x^{\nu}## is such that it preserves the Minkowski metric ##\eta_{\mu\nu}##, meaning that ##\eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}x'^{\mu}x'^{\nu}## for all ##x##. Show that this implies that ##\eta_{\mu\nu} = \eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##.

Use this result to show that an infinitesimal transformation of the form ##{\Lambda^{\mu}}_{\nu}={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}## is a Lorentz transformation when ##\omega^{\mu\nu}## is antisymmetric: i.e. ##\omega^{\mu\nu}=-\omega^{\nu\mu}##.

Write down the matrix form for ##{\omega^{\mu}}_{\nu}## that corresponds to a rotation through an infinitesimal angle ##\theta## about the ##x^{3}##-axis.

Do the same for a boost along the ##x^{1}##-axis by an infinitesimal velocity ##v##.

Homework Equations



3. The Attempt at a Solution [/B]

##\eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}x'^{\mu}x'^{\nu}##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}({\Lambda^{\mu}}_{\rho}x^{\rho})({\Lambda^{\mu}}_{\sigma}x^{\sigma})##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\rho\sigma}({\Lambda^{\rho}}_{\mu}x^{\mu})({\Lambda^{\sigma}}_{\nu}x^{\nu})##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}x^{\mu}x^{\nu}##

##\implies \eta_{\mu\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}##Am I correct so far?
 
Physics news on Phys.org
failexam said:
##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}x^{\mu}x^{\nu}##

##\implies \eta_{\mu\nu}=\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}##

Am I correct so far?
Yes, I think so. But someone might want to see explicitly how you get the last line from the next to last line.
 
Well, the next to last line consists of a sum of terms ##\eta_{\mu\nu}x^{\mu}x^{\nu}## and ##\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}x^{\mu}x^{\nu}## with all possible combinations of values ##0,1,2,3## for the indices ##\mu## and ##\nu##.

However, the last line only contains the terms ##\eta_{\mu\nu}## and ##\eta_{\rho\sigma}{\Lambda^{\rho}}_{\mu}{\Lambda^{\sigma}}_{\nu}## for a specific value of ##\mu## and ##\nu##.

I thought that this was obvious, so I decided to skip the explanation. Isn't my reasoning sound, though?
 
If I have two matrices ##A_{\mu \nu}## and ##B_{\mu \nu}## that satisfy ##A_{\mu \nu}x^{\mu}x^{\nu} = B_{\mu \nu}x^{\mu}x^{\nu}## for all possible ##x^{\mu}##, can I conclude that ##A_{\alpha \beta} = B_{\alpha \beta}## for all ##\alpha## and ##\beta##?
 
I think so, yes.
 
Try to show explicitly that ##A_{12} = B_{12}##.
 
Oh wait. The correct relation is ##A_{12}+A_{21}=B_{12}+B_{21}##.
 
failexam said:
Oh wait. The correct relation is ##A_{12}+A_{21}=B_{12}+B_{21}##.
Right.
 
Well! In that case, I need to rewrite my solution:

##\eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}x'^{\mu}x'^{\nu}##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\mu\nu}({\Lambda^{\mu}}_{\sigma}x^{\sigma})({\Lambda^{\nu}}_{\tau}x^{\tau})##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\sigma\tau}({\Lambda^{\sigma}}_{\mu}x^{\mu})({\Lambda^{\tau}}_{\nu}x^{\nu})##

##\implies \eta_{\mu\nu}x^{\mu}x^{\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}x^{\mu}x^{\nu}##

##\implies \eta_{\mu\nu}+\eta_{\nu\mu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}+\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\nu}{\Lambda^{\tau}}_{\mu}##, since ##x^{\mu}x^{\nu}=x^{\nu}x^{\mu}##

##\implies \eta_{\mu\nu}+\eta_{\mu\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}+\eta_{\tau\sigma}{\Lambda^{\tau}}_{\mu}{\Lambda^{\sigma}}_{\nu}##, since the metric tensor is symmetric, i.e. ##\eta^{\mu\nu}=\eta^{\nu\mu}##

##\implies \eta_{\mu\nu}+\eta_{\mu\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}+\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##

##\implies 2 \eta_{\mu\nu}= 2 \eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##

##\implies \eta_{\mu\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##

Is my solution correct?
 
Last edited:
  • #10
Yes. The symmetry of the metric tensor is used here.
 
  • #11
Next, I need to use the result ##\eta_{\mu\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}## to show that an infinitesimal transformation of the form ##{\Lambda^{\mu}}_{\nu}={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}## is a Lorentz transformation when ##\omega^{\mu\nu}## is antisymmetric: i.e. ##\omega^{\mu\nu}=-\omega^{\nu\mu}##:

##\eta_{\mu\nu}=\eta_{\sigma\tau}{\Lambda^{\sigma}}_{\mu}{\Lambda^{\tau}}_{\nu}##

##\implies \eta_{\mu\nu}=\eta_{\sigma\tau}({\delta^{\sigma}}_{\mu}+{\omega^{\sigma}}_{\mu})({\delta^{\tau}}_{\nu}+{\omega^{\tau}}_{\nu})##

##\implies \eta_{\mu\nu}=\eta_{\sigma\tau}({\delta^{\sigma}}_{\mu}{\delta^{\tau}}_{\nu}+{\delta^{\sigma}}_{\mu}{\omega^{\tau}}_{\nu}+{\omega^{\sigma}}_{\mu}{\delta^{\tau}}_{\nu}+{\omega^{\sigma}}_{\mu}{\omega^{\tau}}_{\nu})##

##\implies \eta_{\mu\nu}=\eta_{\mu\nu}+\eta_{\mu\tau}{\omega^{\tau}}_{\nu}+\eta_{\nu\sigma}{\omega^{\sigma}}_{\mu}+\eta_{\sigma\tau}{\omega^{\sigma}}_{\mu}{\omega^{\tau}}_{\nu}##

##\implies \eta_{\mu\tau}{\omega^{\tau}}_{\nu}+\eta_{\nu\sigma}{\omega^{\sigma}}_{\mu} = 0##, where we neglect the term ##\eta_{\sigma\tau}{\omega^{\sigma}}_{\mu}{\omega^{\tau}}_{\nu}## because it is of second order in the infinitesimal ##{\omega^{\mu}}_{\nu}##.

##\implies \omega_{\mu\nu}+\omega_{\nu\mu}=0##

##\implies \omega_{\mu\nu}=-\omega_{\nu\mu}##

##\implies \omega^{\mu\nu}=-\omega^{\nu\mu}##

so that ##\omega^{\mu\nu}## is antisymmetric.

Is my solution correct?
 
  • #12
Yes.
 
  • #13
Finally, the remaining parts of the problem:

The matrix form for ##{\Lambda^{\mu}}_{\nu}## that corresponds to a rotation through a finite angle ##\theta## about the ##x^{3}##-axis is given by

## {\Lambda^{\mu}}_{\nu} =
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & -\text{sin}\ \theta & 0 \\
0 & \text{sin}\ \theta & \text{cos}\ \theta & 0 \\
0 & 0 & 0 & 1 \end{array} \right) =
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) +
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -\theta & 0 \\
0 & \theta & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right) + \cdots ={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}+\cdots ,
##

where we used ##\text{sin}\ \theta = \theta - \frac{\theta^{3}}{3!}+\cdots## and ##\text{cos}\ \theta = 1 + \frac{\theta^{2}}{2!}+\cdots ## and we only kept terms up to linear order in ##\theta## in the expansion of ##{\Lambda^{\mu}}_{\nu}##,

so the matrix form for ##{\omega^{\mu}}_{\nu}## that corresponds to a rotation through an infinitesimal angle ##\theta## about the ##x^{3}##-axis is given by

##{\omega^{\mu}}_{\nu}=
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -\theta & 0 \\
0 & \theta & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right).##
The matrix form for ##{\Lambda^{\mu}}_{\nu}## that corresponds to a boost along the ##x^{1}##-axis by a finite velocity ##v## is given by

## {\Lambda^{\mu}}_{\nu} =
\left( \begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) =
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) +
\left( \begin{array}{cccc}
0 & -v & 0 & 0 \\
v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right) + \cdots ={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}+\cdots ,
##

where we used ##\gamma =\frac{1}{\sqrt{1-v^{2}}}=(1-v^{2})^{-1/2}=1+\frac{v^{2}}{2}+\dots ## and ##\gamma v =v\frac{1}{\sqrt{1-v^{2}}}=v(1-v^{2})^{-1/2}=v+\frac{v^{3}}{2}+\dots ## and we only kept terms up to linear order in ##v## in the expansion of ##{\Lambda^{\mu}}_{\nu}##,

so the matrix form for ##{\omega^{\mu}}_{\nu}## that corresponds to a boost along the ##x^{1}##-axis by an infinitesimal velocity ##v## is given by

##{\omega^{\mu}}_{\nu}=
\left( \begin{array}{cccc}
0 & -v & 0 & 0 \\
v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right).##Is this solution correct?
 
  • #14
failexam said:
The matrix form for ##{\Lambda^{\mu}}_{\nu}## that corresponds to a boost along the ##x^{1}##-axis by a finite velocity ##v## is given by

## {\Lambda^{\mu}}_{\nu} =
\left( \begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) =
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) +
\left( \begin{array}{cccc}
0 & -v & 0 & 0 \\
v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right) + \cdots
##
Check the sign in the first column of the last matrix on the right side.
 
  • #15
It is a typo. We should instead have the following:

##{\Lambda^{\mu}}_{\nu} =
\left( \begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) =
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) +
\left( \begin{array}{cccc}
0 & -v & 0 & 0 \\
-v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right) + \cdots ={\delta^{\mu}}_{\nu}+{\omega^{\mu}}_{\nu}+\cdots ##

so that

##{\omega^{\mu}}_{\nu}=
\left( \begin{array}{cccc}
0 & -v & 0 & 0 \\
-v & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right)##.

I believe everything else is correct, isn't it?
 
  • #16
Looks good.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 10 ·
Replies
10
Views
3K