IPHO classical mechanics: A mass falls on an exoplanet

Click For Summary
SUMMARY

The discussion focuses on the mechanics of a mass falling on an exoplanet, specifically analyzing the position vectors and energy conservation principles. The participants identify the system as non-conservative, leading to the work done by the force being expressed as W_n = -∫ n(m'(t))^(M + 1) dt. A contradiction arises between energy conservation and Newton's second law, prompting a clarification on notation and the definition of variables. The importance of using dimensionless powers in equations is emphasized, particularly in the context of drag forces.

PREREQUISITES
  • Understanding of classical mechanics principles, including energy conservation and Newton's laws.
  • Familiarity with vector notation and position vectors in physics.
  • Knowledge of calculus, particularly differentiation and integration.
  • Concept of non-conservative forces and their implications in mechanical systems.
NEXT STEPS
  • Study the implications of non-conservative forces in classical mechanics.
  • Learn about the application of energy conservation in varying gravitational fields.
  • Explore the concept of dimensionless quantities in physics and their significance.
  • Investigate the role of drag forces in motion and their mathematical representation.
USEFUL FOR

Students of physics, particularly those studying classical mechanics, researchers exploring gravitational effects on exoplanets, and educators seeking to clarify concepts of energy conservation and force dynamics.

TanWu
Messages
17
Reaction score
5
Homework Statement
Suppose that a mass ##M## falls on a exoplanet with acceleration of gravity ##g##. The mass is released from at a height ##m## above the surface. We define the coordinate system where the mass is realised, and use a typical rectangular coordinate system that is positive upwards and to the right. That is, ##m_i = 0~\hat m##, ##\hat m > 0## upwards, and ##\hat m_{\pi/2}> 0## rightwards. When the mass ##M## falls, it acted upon my a non-conservative drag force which has the form ##\vec F_n = n(m'(t))^M \hat m## where ##M## is the mass, and ##n## is a constant. The task of this problem is to apply Newton Second Law in the ##\hat m##-direction and to use energy conservation to derive the expression for Newton II. You may assume that the coordinate system we have defined for this problem is inertial, that the mass is realised from rest and that any other drag force beside the one mentioned on this planet is negligible .
Relevant Equations
$\vec F_n = n(m'(t))^M \hat m$
Attempt:

I assume that the position of the mass ##M## after it is realised its position is given by the position vectors from the origin,

##\vec m = -m(t)~\hat m## if ##m(t) > 0##

or equivalently

##\vec m = m(t)~\hat m## if ##m(t) < 0##

Either one we can use for energy conservation (I am not too sure abou this). I identity the system as non-Conservative, and therefore, work done by the ##\vec F_n## is,

##W_n = -\int n(m'(t))^{M + 1} dt## using ##m'(t) = \frac{dm}{dt}##

Apply energy conservation in the vertical (##\hat m##) direction,

##\Delta V + \Delta K = W_n##

I choose to the ##\vec m = -m(t)~\hat m## if ##m(t) > 0## expression,

##-Mgm(t) - mgm_i + \frac{1}{2}M(m'(t))_f^2 - \frac{1}{2}M(m'(t))_i^2 = -\int n(m'(t))^{M + 1} dt##

##-Mgm(t) + \frac{1}{2}M(m'(t))_f^2 = -\int n(m'(t))^{M+1} dt##

I denote ##m_f'(t))^2## as ##m'(t)## for simplicity.

##-Mgm(t) + \frac{1}{2}M(m'(t))^2 = -\int n(m'(t))^{M+1} dt##

Then taking time derivatives of each side,

##-Mgm'(t) + Mm'(t)m''(t) = -n(m'(t))^{M + 1}##

##-Mgm'(t) + Mm'(t)m''(t) = -n(m'(t))^{M + 1}##

##m'(t)[-Mg + Mm''(t) + n(m'(t))^{M}]= 0##

##m'(t) = 0## is physically impossible or ##-Mg + Mm''(t) + n(m'(t))^{M} = 0##

##-Mg + n(m'(t))^{M} = -Mm''(t)##

However, from Newton II,

##-Mg \hat m + n(m'(t))^M \hat m = Mm''(t) \hat m##

##-Mg + n(m'(t))^M = Mm''(t)##

As you can probly see, there is a contradiction between the result from energy conservation and Newton II.

I express gratitude to the person who solves my doubt.
 
Physics news on Phys.org
TanWu said:
##\vec m = -m(t)~\hat m## if ##m(t) > 0##

or equivalently

##\vec m = m(t)~\hat m## if ##m(t) < 0##
You may be confusing yourself with your notation.
First, m is defined as the release height. Don’t use it as a variable. But since you have, I'll stick with that, using ##h## for the initial height.
The release point is defined as the origin. The vertical axis is defined as positive up. If at time t the vertical coordinate is m(t) then m(0)=0 and it finishes with m=-h.
##\vec m=m\hat m##. That is true whether y is positive (as a result of having been thrown upwards at the start, maybe) or negative. It does not switch to ##\vec m=-m\hat m## according to the sign of m.
TanWu said:
Either one we can use for energy conservation (I am not too sure abou this). I identity the system as non-Conservative, and therefore, work done by the ##\vec F_n## is,

##W_n = -\int n(m'(t))^{M + 1} dt## using ##m'(t) = \frac{dm}{dt}##
That cannot be right. Since m starts at zero and goes negative, ##m'<0##. That equation would make the work done by drag positive, when clearly it must be negative.
 
  • Like
Likes   Reactions: MatinSAR
TanWu said:
##\vec F_n = n(m'(t))^M \hat m## where ##M## is the mass, and ##n## is a constant
If you raise a number to some power, the power must be dimensionless (a pure number) So raising something to the power ##M##, where ##M## is mass, is wrong.

The question has other issues as well IMO. It would be interesting to know where the original question comes from.
 
  • Like
Likes   Reactions: berkeman

Similar threads

  • · Replies 27 ·
Replies
27
Views
1K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 17 ·
Replies
17
Views
964
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 24 ·
Replies
24
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K