IPHO classical mechanics: A mass falls on an exoplanet

AI Thread Summary
The discussion centers on the dynamics of a mass falling on an exoplanet, with participants analyzing the application of energy conservation and Newton's laws. A contradiction arises between the results derived from energy conservation and Newton's second law, particularly regarding the sign and definition of the mass's position vector. Clarifications are made about the notation used, emphasizing that the position should consistently reflect the vertical axis as positive upwards. Concerns are raised about the treatment of work done by drag forces and the dimensionality of variables involved in the equations. The conversation highlights the complexities of classical mechanics in non-conservative systems and the importance of consistent variable definitions.
TanWu
Messages
17
Reaction score
5
Homework Statement
Suppose that a mass ##M## falls on a exoplanet with acceleration of gravity ##g##. The mass is released from at a height ##m## above the surface. We define the coordinate system where the mass is realised, and use a typical rectangular coordinate system that is positive upwards and to the right. That is, ##m_i = 0~\hat m##, ##\hat m > 0## upwards, and ##\hat m_{\pi/2}> 0## rightwards. When the mass ##M## falls, it acted upon my a non-conservative drag force which has the form ##\vec F_n = n(m'(t))^M \hat m## where ##M## is the mass, and ##n## is a constant. The task of this problem is to apply Newton Second Law in the ##\hat m##-direction and to use energy conservation to derive the expression for Newton II. You may assume that the coordinate system we have defined for this problem is inertial, that the mass is realised from rest and that any other drag force beside the one mentioned on this planet is negligible .
Relevant Equations
$\vec F_n = n(m'(t))^M \hat m$
Attempt:

I assume that the position of the mass ##M## after it is realised its position is given by the position vectors from the origin,

##\vec m = -m(t)~\hat m## if ##m(t) > 0##

or equivalently

##\vec m = m(t)~\hat m## if ##m(t) < 0##

Either one we can use for energy conservation (I am not too sure abou this). I identity the system as non-Conservative, and therefore, work done by the ##\vec F_n## is,

##W_n = -\int n(m'(t))^{M + 1} dt## using ##m'(t) = \frac{dm}{dt}##

Apply energy conservation in the vertical (##\hat m##) direction,

##\Delta V + \Delta K = W_n##

I choose to the ##\vec m = -m(t)~\hat m## if ##m(t) > 0## expression,

##-Mgm(t) - mgm_i + \frac{1}{2}M(m'(t))_f^2 - \frac{1}{2}M(m'(t))_i^2 = -\int n(m'(t))^{M + 1} dt##

##-Mgm(t) + \frac{1}{2}M(m'(t))_f^2 = -\int n(m'(t))^{M+1} dt##

I denote ##m_f'(t))^2## as ##m'(t)## for simplicity.

##-Mgm(t) + \frac{1}{2}M(m'(t))^2 = -\int n(m'(t))^{M+1} dt##

Then taking time derivatives of each side,

##-Mgm'(t) + Mm'(t)m''(t) = -n(m'(t))^{M + 1}##

##-Mgm'(t) + Mm'(t)m''(t) = -n(m'(t))^{M + 1}##

##m'(t)[-Mg + Mm''(t) + n(m'(t))^{M}]= 0##

##m'(t) = 0## is physically impossible or ##-Mg + Mm''(t) + n(m'(t))^{M} = 0##

##-Mg + n(m'(t))^{M} = -Mm''(t)##

However, from Newton II,

##-Mg \hat m + n(m'(t))^M \hat m = Mm''(t) \hat m##

##-Mg + n(m'(t))^M = Mm''(t)##

As you can probly see, there is a contradiction between the result from energy conservation and Newton II.

I express gratitude to the person who solves my doubt.
 
Physics news on Phys.org
TanWu said:
##\vec m = -m(t)~\hat m## if ##m(t) > 0##

or equivalently

##\vec m = m(t)~\hat m## if ##m(t) < 0##
You may be confusing yourself with your notation.
First, m is defined as the release height. Don’t use it as a variable. But since you have, I'll stick with that, using ##h## for the initial height.
The release point is defined as the origin. The vertical axis is defined as positive up. If at time t the vertical coordinate is m(t) then m(0)=0 and it finishes with m=-h.
##\vec m=m\hat m##. That is true whether y is positive (as a result of having been thrown upwards at the start, maybe) or negative. It does not switch to ##\vec m=-m\hat m## according to the sign of m.
TanWu said:
Either one we can use for energy conservation (I am not too sure abou this). I identity the system as non-Conservative, and therefore, work done by the ##\vec F_n## is,

##W_n = -\int n(m'(t))^{M + 1} dt## using ##m'(t) = \frac{dm}{dt}##
That cannot be right. Since m starts at zero and goes negative, ##m'<0##. That equation would make the work done by drag positive, when clearly it must be negative.
 
TanWu said:
##\vec F_n = n(m'(t))^M \hat m## where ##M## is the mass, and ##n## is a constant
If you raise a number to some power, the power must be dimensionless (a pure number) So raising something to the power ##M##, where ##M## is mass, is wrong.

The question has other issues as well IMO. It would be interesting to know where the original question comes from.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top