Irradiance and Isc and Voc of a solar cell

Click For Summary
SUMMARY

The discussion centers on the relationship between irradiance, open circuit voltage (Voc), and short circuit current (Isc) in solar cells. It is established that while short circuit current increases with irradiance, open circuit voltage does not increase linearly and is negatively affected by temperature. The maximum power point (MPP) is crucial for optimal solar cell operation, as cells are not operated at either Voc or Isc. Instead, they function close to the MPP to maximize power output.

PREREQUISITES
  • Understanding of solar cell operation principles
  • Knowledge of maximum power point tracking (MPPT)
  • Familiarity with the effects of temperature on semiconductor materials
  • Basic concepts of irradiance versus light intensity
NEXT STEPS
  • Research maximum power point tracking (MPPT) techniques for solar cells
  • Learn about the temperature coefficients of silicon solar cells
  • Explore the impact of irradiance on solar cell performance
  • Investigate methods to minimize resistive losses in solar panels
USEFUL FOR

Solar energy engineers, photovoltaic system designers, and anyone involved in optimizing solar cell performance will benefit from this discussion.

says
Messages
585
Reaction score
12
When irradiance increases what happens to open circuit voltage and short circuit current of a solar cell? Do they both increase linearly? Because temperature affects open circuit voltage, so I'd assume open circuit voltage doesn't increase linearly then...
 
Engineering news on Phys.org
Voltage does not increase linearly with radiance. Current does increase with radiance.
But you want power so you must find the point where the product of voltage and current is close to the maximum.
That cannot be with short circuit current because then there is no voltage.
That cannot be with an open circuit voltage because then there is no current.
https://en.wikipedia.org/wiki/Maximum_power_point_tracking#I-V_curve
Voltage drop across the resistance of the cell increases with temperature and dominates voltage reduction due to rising temperature.
PN junction voltage falls slightly with temperature increase.
 
Ok, so open circuit voltage doesn't increase with irradiance, so then it must decrease due to temperature effects.

I was confused between light intensity and irradiance. As light intensity increases open circuit voltage and short circuit current increase, but light intensity and irradiance are two different things.
 
says said:
Ok, so open circuit voltage doesn't increase with irradiance, so then it must decrease due to temperature effects.
Correct. All other things being equal, the open circuit voltage will have the negative temperature coefficient of the cell material, probably silicon.
says said:
I was confused between light intensity and irradiance.
Avoid the confusion by referring to incident power. Only photons with wavelength, energy sufficient to overcome the semiconductor band gap are being considered.
Twice the power, is twice the photons, is twice the electrons, is twice the current.
 
  • Like
Likes   Reactions: says
As irradiance increases, we can assume temperature will increase (more irradiance=later in the day=temperature increasing), this means that Voc decreases due to temperature effects, and short circuit current increases due to more irradiance.
 
A cell is never operated at open-circuit voltage or short-circuit current. It is operated close to the MPP.
As output current increases the voltage falls since the cell internal resistance drops more voltage.
There is also the smaller drop due to the temperature of PN junction.

The rising panel temperature is is due to heat from;
1. Internal I2R resistive losses.
2. Incident long wavelength radiation with insufficient energy to overcome the bandgap.
3. Thermal environment later in the day as angle to Sun changes and as air warms.
 
"
A cell is never operated at open-circuit voltage or short-circuit current.
Solar cell is operated close to the MPP.
That cannot be with short circuit current because then there is no voltage.
That cannot be with an open circuit voltage because then there is no current."

thank yall for this simple summary
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K