MHB Irrational numbers forming dense subset

bw0young0math
Messages
27
Reaction score
0
Hello. I have some problems with proving this. It is difficult for me. Please help me.:confused:

"For arbitrary irrational number a>0, let A={n+ma|n,m are integer.}
Show that set A is dense in R(real number)
 
Physics news on Phys.org
Let's say that $x$ divides $y$ if there exists an integer $k$ such that $y=kx$. Also, let's call any number of the form $am+bn$ where $a,b\in\mathbb{R}$ and $m,n\in\mathbb{Z}$ a linear combination of $a$ and $b$.

Prove by contradiction that the smallest positive linear combination of any two real numbers divides both numbers. Deduce that the set of positive linear combinations of $a\in\mathbb{R}\setminus\mathbb{Q}$ and 1 does not have the smallest element (otherwise, $a$ and 1 would be commensurate). Next show that the greatest lower bound of the set of positive linear combinations is 0. Now that you have a positive linear combination as small as you'd like, note that $A$ contains all its multiples.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...