I´m having a hard time proving the next result:(adsbygoogle = window.adsbygoogle || []).push({});

Let [itex] T:V→V [/itex] be a linear operator on a finite dimensional vector space [itex] V [/itex] . If [itex] T [/itex] is irreducible then [itex] T [/itex] cyclic.

My definitions are: [itex] T [/itex] is an irreducible linear operator iff [itex] V [/itex] and {[itex] {\vec 0} [/itex]} are the only complementary invariant subspaces.

T is cyclic linear operator iff V is a cyclic vector space (i.e. there is a vector [itex] \vec v ∈ V [/itex] such that [itex] V [/itex] is generated by the set of vectors {[itex] { \vec v, T(\vec v), T^{2}(\vec v),...} [/itex]}

I was trying to do it by contradiction: suppose [itex] T [/itex] is not a cyclic linar operator then [itex] ∀ \vec v ∈ V [/itex] the generated space by the set {[itex] { \vec v, T(\vec v), T^{2}(\vec v),...} [/itex]} is not equal to [itex] V [/itex] also if [itex] \vec v \neq \vec 0 [/itex] then [itex]span [/itex] { [itex]\vec v, T(\vec v), T^{2}(\vec v),... [/itex] } is not equal to [itex] {\vec 0} [/itex].

Moreover [itex]span [/itex] {[itex] \vec v, T(\vec v), T^{2}(\vec v),... [/itex] } is invariant (I´ve already proven it); also I know that every subspace has a complement that is : [itex] ∃ W [/itex] subspace of V such that [itex] W ⊕ span[/itex]{[itex] \vec v, T(\vec v), T^{2}(\vec v),... [/itex]} [itex] = V [/itex]

Then I think a just need to prove that the complementary subspace [itex] W [/itex] is invariant that is : [itex] T(W)⊆ W [/itex] but this is the part that I´m having trouble.

Any comment, suggestion, hint would be highly appreciated

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Irreducible linear operator is cyclic

Tags:

Loading...

Similar Threads for Irreducible linear operator |
---|

I Intuitive Linear Transformation |

I Linear Programming: how to identify conflicting equations |

I Adding a matrix and a scalar. |

I Linear mapping of a binary vector based on its decimal value |

I Solutions to equations involving linear transformations |

**Physics Forums | Science Articles, Homework Help, Discussion**