MTd2 said:
Arivero, I am confused by what your trying to accomplish. According to papers I could find, quark-diquark supersymmetry help in simplifying scattering calculations because it supposes that baryons on strong couple can be well approximated by a quark bound to a super symmetric parter. While the possible verification of this kind of approximation is extremely important to the study of nuclear forces, I don`t see how could that be relevant to fundamental issues that could have the label "beyond the standard model".
The real point in the literature are not the quark-diquark models, but the so called "dual pion quark" and "dual gluon quark" models, and similarly named schemes, that appeared during 1971-1973 after the paper of Ramond on the spin 1/2 version of the "dual model". Eventually these models dissappeared, being substituted either by fully fundamental strings (going to the actual impasse) or by simple, non fundamental at all, calculational tools as you say. BTW, these attemps actually started with work of Utiyama, predating the string discovery of susy.
What I am trying to accomplish? Well, I think was trying to address two small problems, one one side the fact that some mass relationships seem to be related to composite models, while the quarks and leptons have no structure, and in other side the fact that there are coincidences between mass scales of very different origin, the "QCD" masses and the "yukawa-electroweak" masses. There is no fundamental reason for QCD to produce masses in the same "mountain ranges" that the electroweak+yukawa. This is a kind of "fine tunning" not explained in GUT models.
What I show? That the first hunch, when supplemented with quark flavours, was better that the fully fundamental way. And that actually it predicts the generation structure of the standard model, not only the number of generations, but also the number of "massless" quarks.
Of course, but this is unimportant, my discovery process was in the reverse way, upstream. First I wondered about the mass of the muon... Why is it so near of the pion mass? If it were for SUSY, we should have the same number of fermion that bosons, hmm, let's count... three spin 1/2 negative leptons... and six different ways of making negative mesons! Shock. Then I asked, but what about quarks, and again, for +2/3 and for -1/3 the degrees of freedom match. Shocking thing. Then for neutrinos you get naively 1 degree of freedom more, telling that you mast to do SU(5) instead of U(5). Then I checked uniqueness, as described above, and yep the 3 generations is the simplest model, and it becomes unique in fact if you incorporate the requisity of building neutrinos from neutrals in SU(n+m). Only at this level I checked the literature must deeply and I found that these kind of models were the first ones in the mind of the string people, but at that time they only know 3 quarks, so even if they had got to predict the generations, it had been discarded as far-fetched.
Careful said:
I will respond to you tomorrow, have work to do now.
Careful
Thanks, I appreciate your interaction :-)