MHB Is a Number Divisible by 15 and 18 Also Divisible by 27?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Division
Click For Summary
A number divisible by both 15 and 18 is not necessarily divisible by 27. While it is true that being divisible by 15 implies divisibility by 3 and 5, and being divisible by 18 implies divisibility by 2 and 3, the combination does not guarantee divisibility by 27. The least common multiple of 15 and 18 is 90, which is not divisible by 27. Therefore, one cannot assume that a number divisible by 15 and 18 is also divisible by 27.
Yankel
Messages
390
Reaction score
0
Hello,

I got a very basic question...

A number n is dividable by 15 and 18. Can I assume from that that it is dividable by 27?

(dividable - you can divide it by 15 and get no reminder).

If it is dividable by 15, it is by 3 and 5. If by 18, it is dividable by 3 and 6, which means 3 and 2.

Can I say that since not every number that is dividable by 3 is also dividable by 9, this number is not dividable by 27, not necessarily anyway ?
 
Mathematics news on Phys.org
The least common multiple of 15 and 18 is 90, which is divisible by both 15 and 18. but not 27. However, 270 is also divisible by 15, 18 ... and 27.

So, one cannot assume the number n is divisible by 27, yet that doesn’t mean there is no value of n divisible by 27.
 
Yankel said:
Hello,

I got a very basic question...

A number n is dividable by 15 and 18. Can I assume from that that it is dividable by 27?

(dividable - you can divide it by 15 and get no reminder).

If it is dividable by 15, it is by 3 and 5. If by 18, it is dividable by 3 and 6, which means 3 and 2.

Can I say that since not every number that is dividable by 3 is also dividable by 9, this number is not dividable by 27, not necessarily anyway ?

If a number is divisible by 15, it is divisible by 3 and 5.

If a number is divisible by 18, it is divisible by 2, 3 and 3.

So if the number is divisible by both 15 and 18, it is divisible by 2, 3, 3 and 5.

There is not any multiplicative combination of 2, 3, 3 and 5 to give 27. So no, we can not assume that the number is divisible by 27.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K