MHB Is B Equal to A³ Given Symmetric and Invertible Matrices?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix Symmetric
Yankel
Messages
390
Reaction score
0
Hello all,

If A and B are both squared invertible matrices and A is also symmetric and:

\[AB^{-1}AA^{T}=I\]

Can I say that

\[B=A^{3}\] ?

In every iteration of the solution, I have multiplied both sides by a different matrix. At first by the inverse of A, then the inverse of the transpose, etc...Is this the correct approach to solve this ? Thank you in advance !

Another question. If A in both symmetric and invertible, it doesn't mean that the inverse of A is equal to A, right ?
 
Physics news on Phys.org
Yankel said:
Hello all,

If A and B are both squared invertible matrices and A is also symmetric and:

\[AB^{-1}AA^{T}=I\]

Can I say that

\[B=A^{3}\] ?

In every iteration of the solution, I have multiplied both sides by a different matrix. At first by the inverse of A, then the inverse of the transpose, etc...Is this the correct approach to solve this ? Thank you in advance !

Sure.
With $A$ symmetric and invertible, we have indeed:
$$
AB^{-1}AA^{T}=I
\quad\Rightarrow\quad AB^{-1}AA=I
\quad\Rightarrow\quad A^{-1}AB^{-1}AA=A^{-1}I
\quad\Rightarrow\quad B^{-1}AA=A^{-1} \\
\quad\Rightarrow\quad BB^{-1}AAA=BA^{-1}A
\quad\Rightarrow\quad AAA=B
\quad\Rightarrow\quad B=A^3
$$

Yankel said:
Another question. If A in both symmetric and invertible, it doesn't mean that the inverse of A is equal to A, right ?

Nope.
That will only be the case if $A$ is either identity or a reflection (only eigenvalues $\pm 1$).
 
Thanks !
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top