MHB Is B Equal to A³ Given Symmetric and Invertible Matrices?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix Symmetric
Yankel
Messages
390
Reaction score
0
Hello all,

If A and B are both squared invertible matrices and A is also symmetric and:

\[AB^{-1}AA^{T}=I\]

Can I say that

\[B=A^{3}\] ?

In every iteration of the solution, I have multiplied both sides by a different matrix. At first by the inverse of A, then the inverse of the transpose, etc...Is this the correct approach to solve this ? Thank you in advance !

Another question. If A in both symmetric and invertible, it doesn't mean that the inverse of A is equal to A, right ?
 
Physics news on Phys.org
Yankel said:
Hello all,

If A and B are both squared invertible matrices and A is also symmetric and:

\[AB^{-1}AA^{T}=I\]

Can I say that

\[B=A^{3}\] ?

In every iteration of the solution, I have multiplied both sides by a different matrix. At first by the inverse of A, then the inverse of the transpose, etc...Is this the correct approach to solve this ? Thank you in advance !

Sure.
With $A$ symmetric and invertible, we have indeed:
$$
AB^{-1}AA^{T}=I
\quad\Rightarrow\quad AB^{-1}AA=I
\quad\Rightarrow\quad A^{-1}AB^{-1}AA=A^{-1}I
\quad\Rightarrow\quad B^{-1}AA=A^{-1} \\
\quad\Rightarrow\quad BB^{-1}AAA=BA^{-1}A
\quad\Rightarrow\quad AAA=B
\quad\Rightarrow\quad B=A^3
$$

Yankel said:
Another question. If A in both symmetric and invertible, it doesn't mean that the inverse of A is equal to A, right ?

Nope.
That will only be the case if $A$ is either identity or a reflection (only eigenvalues $\pm 1$).
 
Thanks !
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top