MHB Is G an Abelian Group Given Specific Conditions?

alexmahone
Messages
303
Reaction score
0
Let $G$ be a group such that for all $a$, $b$, $c$, $d$, and $y\in G$ if $ayb=cyd$ then $ab=cd$. Show that $G$ is an Abelian group.

HINTS ONLY as this is an assignment problem.
 
Last edited:
Physics news on Phys.org
Consider $ayb=cyd$ when $y$ is the inverse of something.
 
Evgeny.Makarov said:
Consider $ayb=cyd$ when $y$ is the inverse of something.

Even if I suppose $y=a^{-1}$ or $b^{-1}$ or $a^{-1}b^{-1}$, how do I know that $ayb=cyd$ has to be true?
 
Alexmahone said:
Even if I suppose $y=a^{-1}$ or $b^{-1}$ or $a^{-1}b^{-1}$, how do I know that $ayb=cyd$ has to be true?
Given $a$ and $b$, you can make $ayb=cyd$ true by choosing $y$, $c$ and $d$ appropriately.

Another way to look at this is the following. You need to prove $ab=ba$ for all $a$ and $b$. Try to apply the implication that is given to you in post #1. For this you have to guess $y$ because it occurs only in the assumption and not the conclusion.
 
I think I got it!

Take $c=b$ and $d=a$
Take $y=a^{-1}$

$ayb=aa^{-1}b=b$
$cyd=ba^{-1}a=b$
So, $ayb=cyd$
$\implies ab=cd$
i.e. $ab=ba$
So, $G$ is an Abelian group.
 
Yes, that's correct.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top