MHB Is G an Abelian Group Given Specific Conditions?

alexmahone
Messages
303
Reaction score
0
Let $G$ be a group such that for all $a$, $b$, $c$, $d$, and $y\in G$ if $ayb=cyd$ then $ab=cd$. Show that $G$ is an Abelian group.

HINTS ONLY as this is an assignment problem.
 
Last edited:
Physics news on Phys.org
Consider $ayb=cyd$ when $y$ is the inverse of something.
 
Evgeny.Makarov said:
Consider $ayb=cyd$ when $y$ is the inverse of something.

Even if I suppose $y=a^{-1}$ or $b^{-1}$ or $a^{-1}b^{-1}$, how do I know that $ayb=cyd$ has to be true?
 
Alexmahone said:
Even if I suppose $y=a^{-1}$ or $b^{-1}$ or $a^{-1}b^{-1}$, how do I know that $ayb=cyd$ has to be true?
Given $a$ and $b$, you can make $ayb=cyd$ true by choosing $y$, $c$ and $d$ appropriately.

Another way to look at this is the following. You need to prove $ab=ba$ for all $a$ and $b$. Try to apply the implication that is given to you in post #1. For this you have to guess $y$ because it occurs only in the assumption and not the conclusion.
 
I think I got it!

Take $c=b$ and $d=a$
Take $y=a^{-1}$

$ayb=aa^{-1}b=b$
$cyd=ba^{-1}a=b$
So, $ayb=cyd$
$\implies ab=cd$
i.e. $ab=ba$
So, $G$ is an Abelian group.
 
Yes, that's correct.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
1
Views
361
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
352
  • · Replies 13 ·
Replies
13
Views
943
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K