Is induction a circular way to define natural numbers?

Click For Summary
SUMMARY

This discussion centers on the philosophical implications of Peano arithmetic and its role in defining natural numbers. The Peano axioms, specifically the generative axioms and the induction schema, are examined for their effectiveness in delineating the set of natural numbers, . Daniel Leivant's work highlights the potential circularity in using induction to define , as noted in Edward Nelson's "Predicative Arithmetic." The conversation also touches on the existence of non-isomorphic models of Peano axioms and the uniqueness of a second-order formula that exclusively models natural numbers.

PREREQUISITES
  • Understanding of Peano axioms and their implications in mathematical logic.
  • Familiarity with set theory and its role in defining natural numbers.
  • Knowledge of first-order and second-order logic distinctions.
  • Concept of isomorphism in mathematical models.
NEXT STEPS
  • Research the philosophical foundations of Peano arithmetic.
  • Study the implications of the compactness theorem in model theory.
  • Explore second-order logic and its applications in defining mathematical structures.
  • Investigate Edward Nelson's "Predicative Arithmetic" for insights on quantifiers and circular definitions.
USEFUL FOR

Mathematicians, logicians, philosophy of mathematics scholars, and anyone interested in the foundations of natural numbers and mathematical induction.

Evgeny.Makarov
Gold Member
MHB
Messages
2,434
Reaction score
4
Sorry about the intriguing title; this is just a continuation of the discussion in https://driven2services.com/staging/mh/index.php?threads/5216/ from the Discrete Math forum. The original question there was how to introduce mathematical induction in a clear and convincing way. Since the current discussion about the foundations of mathematics is clearly off-topic, I decided to continue it in a separate thread.

ModusPonens said:
I'm sure you are aware how the set of finite ordinals is constructed. So why is there a contradiction?
Obviously, there is no formal contradiction in Peano arithmetic or in the set-theoretic construction of natural numbers, or at least none has been found yet. The question is about a philosophical justification of Peano arithmetic.

Here is a quotation from Daniel Leivant, Intrinsic Logic and Computational Complexity, in LNCS 960, p. 192.

"The set $\mathbb{N}$ of natural numbers is implicitly defined by Peano's axioms: the generative axioms [$0\in\mathbb{N}$ and $n\in\mathbb{N}\to Sn\in\mathbb{N}$] convey a lower bound on the extension of $\mathbb{N}$, and the induction schema approximates the upper bound. However, as observed in (Edward Nelson, Predicative Arithmetic, Princeton University Press, 1986), if a formula $\varphi$ has quantifiers, then its meaning presupposes the delineation of $\mathbb{N}$ as the domain of the quantifiers, and therefore using induction over $\varphi$ as a component of the delineation of $\mathbb{N}$ is a circular enterprise."

As I said, I don't claim that I fully understand this.

ModusPonens said:
We can prove the Peano axioms in this set, from set theory. That means that there are natural numbers (let's not focus on what "are" means :D ). Now, is the problem proving the uniqueness of a Peano model, modulo isomorphism?
Peano axioms (a first-order theory) has infinitely many non-isomorphic models (a corollary of the compactness theorem). However, it is easy to construct a single second-order formula whose only model are natural numbers.
 
Physics news on Phys.org
Hello

Sorry for my poor choice of words in a discussion about mathematics. I meant "where is the circularity?", not contradiction.

I may be way out of my league, but my question is the following: there are the Peano axioms. They don't define the natural numbers. It seems to me that you have a model which fits the axioms.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K