Is it possible to find matrix A satisfying certain conditions?

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Conditions Matrix
Click For Summary
The discussion centers on the existence of a matrix A that meets specific conditions regarding its rank. It is established that if Ax = b has no solution, then the rank of A must be less than m. Conversely, if A^T y = c has exactly one solution, the rank of A^T must equal m. The conclusion drawn is that since the ranks of A and A^T cannot be equal, such a matrix A cannot exist. The reasoning presented is deemed valid by participants in the discussion.
songoku
Messages
2,503
Reaction score
402
Homework Statement
Is it possible to find A being a m by n matrix, and two vectors b and c, such that Ax = b has no solution and ##A^T## y = c has exactly one solution? Explain why.
Relevant Equations
Maybe Rank
Since Ax = b has no solution, this means rank (A) < m.

Since ##A^T y=c## has exactly one solution, this means rank (##A^T##) = m

Since rank (A) ##\neq## rank (##A^T##) so matrix A can not exist. Is this valid reasoning?

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement: Is it possible to find A being a m by n matrix, and two vectors b and c, such that Ax = b has no solution and ##A^T## y = c has exactly one solution? Explain why.
Relevant Equations: Maybe Rank

Since Ax = b has no solution, this means rank (A) < m.

Since ##A^T y=c## has exactly one solution, this means rank (##A^T##) = m

Since rank (A) ##\neq## rank (##A^T##) so matrix A can not exist. Is this valid reasoning?

Thanks
Looks ok to me.
 
Thank you very much fresh_42
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K