MHB Is it Possible to Prove this Trigonometric Inequality?

Click For Summary
The discussion centers on proving the trigonometric inequality involving the sum of absolute values of cosine functions. The inequality states that the sum of the absolute values of cosines at multiples of 2 raised to the power of n should be greater than or equal to n divided by 2 times the square root of 2. Participants explore various mathematical approaches and provide hints for potential solutions. The conversation emphasizes the need for a rigorous proof applicable to all real x and natural numbers n. Ultimately, the focus is on finding a valid mathematical demonstration of the proposed inequality.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the inequality:

\[\left | \cos x \right |+ \left | \cos 2x \right |+\left | \cos 2^2x \right |+...+ \left | \cos 2^nx \right |\geq \frac{n}{2\sqrt{2}}\]

- for any real x and any natural number, n.
 
Mathematics news on Phys.org
Hint:

What is the range of the function:$f(x) = |\cos x| + |\cos 2x|$?
 
Suggested solution:

Note, that:

\[\left | \cos x \right |+\left | \cos 2x \right |=\left | \cos x \right |+\left | 2\cos ^2x-1 \right | \equiv t + \left | 2t^2-1 \right |\geq \frac{1}{\sqrt{2}}, \: \: \: \: 0\leq t\leq 1.\]

For odd values of $n$, we get $k+1$ pairs ($n = 2k+1$):
\[\left ( \left | \cos x \right |+\left | \cos 2x \right | \right )+\left ( \left | \cos 4x \right |+\left | \cos 8x \right | \right )+ ...+\left ( \left | \cos 2^{n-1}x \right |+\left | \cos 2^{n}x \right | \right )\geq \frac{k+1}{\sqrt{2}}=\frac{n+1}{2\sqrt{2}} > \frac{n}{2\sqrt{2}}\]

For even values of $n$ ($n = 2k+2$):

\[\left | \cos x \right |+\left ( \left | \cos 2x \right | + \left | \cos 4x \right |\right )+ \left ( \left | \cos 8x \right | +\left | \cos 16x \right | \right ) ...+\left ( \left | \cos 2^{n-1}x \right |+\left | \cos 2^{n}x \right | \right ) \geq =\frac{n}{2\sqrt{2}}\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
990
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K