Is it Valid to Average Two Metrics in Spacetime?

  • Context: Graduate 
  • Thread starter Thread starter nomadreid
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the validity of averaging two spacetime metrics, highlighting various mathematical means such as arithmetic, harmonic, geometric, and arithmetic-geometric means. Participants agree that while any combination of metrics satisfying the four defining axioms can be considered valid, the triangle inequality may present challenges. The conversation emphasizes that the resulting metric from averaging may not yield a physically plausible spacetime, as demonstrated by counter-examples involving Riemannian and indefinite metrics. Overall, the topic raises critical questions about the implications of metric averaging in theoretical physics.

PREREQUISITES
  • Understanding of spacetime metrics and their properties
  • Familiarity with mathematical means: arithmetic, harmonic, geometric, and arithmetic-geometric
  • Knowledge of the four defining axioms of a metric
  • Basic principles of Riemannian and Lorentzian geometry
NEXT STEPS
  • Research the implications of the triangle inequality in metric spaces
  • Explore the properties of Riemannian and Lorentzian metrics in detail
  • Study the application of averaging techniques in theoretical physics
  • Investigate the relationship between metrics and the stress-energy tensor in general relativity
USEFUL FOR

The discussion is beneficial for theoretical physicists, mathematicians specializing in geometry, and researchers exploring the foundations of spacetime theories.

nomadreid
Gold Member
Messages
1,762
Reaction score
248
Due to the vagueness of this question, I am posting it in the Lounge, but if anyone suggests I clean it up and post it in a more specific forum, I will do so.
I came across a paper which, in itself, has no scientific value, but one passage in it piques my curiosity. The paper presents a couple of spacetime metrics, and then "averages" them. I have no idea whether this makes any sense. If it does, then just adding them and dividing by two end up with a proper metric? Is there a more valid way of averaging two metrics?
 
Physics news on Phys.org
nomadreid said:
Is there a more valid way of averaging two metrics?
There are plenty to choose from.
Arithmetic mean. AM = (a+b) / 2
Harmonic mean. HM = 2/ ((1/a) + (1/b) )
Geometric mean. GM =√(a⋅b)
Arithmetic Geometric mean. AGM(a, b)
https://en.wikipedia.org/wiki/Arithmetic–geometric_mean
 
  • Like
Likes   Reactions: nomadreid
My understanding is that technically any combination of metrics that satisfies all four defining axioms is still a valid metrics. Averaging them by summing/dividing is definitely 'combining'.

Whether it adds anything to the general picture or to the case is another question.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Baluncore and Borek. Of the four axioms for a metric, it appears that an average (whichever kind) would quickly satisfy the first three, but I suspect that the triangle inequality could conceivably pose difficulties in some cases. I will have to look at the article to see which metrics it combines, and how, and also play around with some metrics myself. Thanks for pointing me in the right direction.
 
\begin{align*}
\overline{x}_{min}&= \min\{\,x_1,\ldots,x_n\,\}&\text{ minimum }\\
\overline{x}_{harm}&= \dfrac{n}{\dfrac{1}{x_1}+\cdots+\dfrac{1}{x_n}}&\text{ harmonic mean }\\
\overline{x}_{geom}&= \sqrt[n]{x_1\cdot \cdots \cdot x_n}\; , \;x_k>0&\text{ geometric mean }\\
\overline{x}_{arithm}&= \dfrac{x_1+\cdots+x_n}{n}&\text{ arithmetic mean }\\
\overline{x}_{quadr}&= \sqrt{\dfrac{1}{n}\left(x_1^2+ \ldots + x_n^2\right)} &\text{ quadratic }\\
\overline{x}_{cubic}&= \sqrt[3]{\dfrac{1}{n}\left(x_1^3+ \ldots + x_n^3\right)} &\text{ cubic }\\
\overline{x}_{max}&= \max\{\,x_1,\ldots,x_n\,\} &\text{ maximum }\\
\end{align*}
$$
\overline{x}_{min}\;\leq\; \overline{x}_{harm} \;\leq\; \overline{x}_{geom} \;\leq\; \overline{x}_{arithm} \;\leq\; \overline{x}_{quadr}\;\leq\; \overline{x}_{cubic}\;\leq\; \overline{x}_{max}
$$
 
  • Like
  • Informative
Likes   Reactions: mcastillo356 and nomadreid
Super. Thanks, fresh_42.
 
fresh_42 said:
\begin{align*}
\overline{x}_{min}&= \min\{\,x_1,\ldots,x_n\,\}&\text{ minimum }\\
\overline{x}_{harm}&= \dfrac{n}{\dfrac{1}{x_1}+\cdots+\dfrac{1}{x_n}}&\text{ harmonic mean }\\
\overline{x}_{geom}&= \sqrt[n]{x_1\cdot \cdots \cdot x_n}\; , \;x_k>0&\text{ geometric mean }\\
\overline{x}_{arithm}&= \dfrac{x_1+\cdots+x_n}{n}&\text{ arithmetic mean }\\
\overline{x}_{quadr}&= \sqrt{\dfrac{1}{n}\left(x_1^2+ \ldots + x_n^2\right)} &\text{ quadratic }\\
\overline{x}_{cubic}&= \sqrt[3]{\dfrac{1}{n}\left(x_1^3+ \ldots + x_n^3\right)} &\text{ cubic }\\
\overline{x}_{max}&= \max\{\,x_1,\ldots,x_n\,\} &\text{ maximum }\\
\end{align*}
$$
\overline{x}_{min}\;\leq\; \overline{x}_{harm} \;\leq\; \overline{x}_{geom} \;\leq\; \overline{x}_{arithm} \;\leq\; \overline{x}_{quadr}\;\leq\; \overline{x}_{cubic}\;\leq\; \overline{x}_{max}
$$

for "average velocity", we must include
\begin{align*}
\overline{v}_{avg}&=\dfrac{v_1 \Delta t_1+\cdots+v_n \Delta t_n }{\phantom{v_1}\Delta t_1 + \cdots +\phantom{v_n}\Delta t_n }&\text{ [time-weighted] average-velocity }\\
\end{align*}
(center of mass is another weighted-average)
 
  • Like
Likes   Reactions: nomadreid
One point: essentially you can put any ten functions of four variables into the cells of a 4×4 symmetric matrix and call it a spacetime metric as long as it's invertible and has a Lorentzian signature. You can feed it through the field equations and get the stress-energy tensor you need to have that spacetime - which will usually have nothing physically plausible about it.

So it's more than likely that any vaguely reasonable combination of two metrics produces something you can call a metric. Whether it produces anything physically plausible or not is another matter.

It will also be a different spacetime from either of the contributing spacetime, so the thread title doesn't really make sense.
 
  • Like
Likes   Reactions: nomadreid
Good point, Ibix.
 
  • #10
For Riemannian metrics it is ok. For indefinite ones need not be the case. For example ##g_1=-dt+dx+dy+dz## and ##g_2=dt-dx+dy+dz##. Their sum will be ##dy+dz##, which is not Lorentzian.
 
  • Like
Likes   Reactions: nomadreid
  • #11
Super counter-example, martinbn! I shall keep it among my treasures. Thanks!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
2K
  • · Replies 0 ·
Replies
0
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K