Is it Valid to Average Two Metrics in Spacetime?

  • Context: Graduate 
  • Thread starter Thread starter nomadreid
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the validity of averaging two spacetime metrics, exploring whether such an operation can yield a proper metric and what methods of averaging might be appropriate. The conversation touches on theoretical implications and mathematical properties of metrics in the context of spacetime.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant questions the validity of averaging spacetime metrics and whether simply adding them and dividing by two results in a proper metric.
  • Another participant lists various methods of averaging, including arithmetic, harmonic, geometric, and arithmetic-geometric means.
  • A participant suggests that any combination of metrics satisfying the four defining axioms could be considered valid, but raises concerns about the triangle inequality potentially complicating the matter.
  • Further discussion includes mathematical expressions for different types of averages, such as minimum, harmonic, geometric, arithmetic, quadratic, cubic, and maximum averages.
  • One participant notes that any functions of four variables can be arranged into a symmetric matrix to form a spacetime metric, provided it is invertible and has a Lorentzian signature, but questions the physical plausibility of such combinations.
  • Another participant provides a counter-example illustrating that the sum of two indefinite metrics may not yield a Lorentzian metric.

Areas of Agreement / Disagreement

Participants express differing views on the validity and implications of averaging metrics, with no consensus reached on whether such operations yield physically plausible results or proper metrics.

Contextual Notes

Participants acknowledge limitations related to the triangle inequality and the physical plausibility of resulting metrics from averaging, indicating that the discussion is nuanced and context-dependent.

nomadreid
Gold Member
Messages
1,771
Reaction score
255
Due to the vagueness of this question, I am posting it in the Lounge, but if anyone suggests I clean it up and post it in a more specific forum, I will do so.
I came across a paper which, in itself, has no scientific value, but one passage in it piques my curiosity. The paper presents a couple of spacetime metrics, and then "averages" them. I have no idea whether this makes any sense. If it does, then just adding them and dividing by two end up with a proper metric? Is there a more valid way of averaging two metrics?
 
Physics news on Phys.org
nomadreid said:
Is there a more valid way of averaging two metrics?
There are plenty to choose from.
Arithmetic mean. AM = (a+b) / 2
Harmonic mean. HM = 2/ ((1/a) + (1/b) )
Geometric mean. GM =√(a⋅b)
Arithmetic Geometric mean. AGM(a, b)
https://en.wikipedia.org/wiki/Arithmetic–geometric_mean
 
  • Like
Likes   Reactions: nomadreid
My understanding is that technically any combination of metrics that satisfies all four defining axioms is still a valid metrics. Averaging them by summing/dividing is definitely 'combining'.

Whether it adds anything to the general picture or to the case is another question.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Baluncore and Borek. Of the four axioms for a metric, it appears that an average (whichever kind) would quickly satisfy the first three, but I suspect that the triangle inequality could conceivably pose difficulties in some cases. I will have to look at the article to see which metrics it combines, and how, and also play around with some metrics myself. Thanks for pointing me in the right direction.
 
\begin{align*}
\overline{x}_{min}&= \min\{\,x_1,\ldots,x_n\,\}&\text{ minimum }\\
\overline{x}_{harm}&= \dfrac{n}{\dfrac{1}{x_1}+\cdots+\dfrac{1}{x_n}}&\text{ harmonic mean }\\
\overline{x}_{geom}&= \sqrt[n]{x_1\cdot \cdots \cdot x_n}\; , \;x_k>0&\text{ geometric mean }\\
\overline{x}_{arithm}&= \dfrac{x_1+\cdots+x_n}{n}&\text{ arithmetic mean }\\
\overline{x}_{quadr}&= \sqrt{\dfrac{1}{n}\left(x_1^2+ \ldots + x_n^2\right)} &\text{ quadratic }\\
\overline{x}_{cubic}&= \sqrt[3]{\dfrac{1}{n}\left(x_1^3+ \ldots + x_n^3\right)} &\text{ cubic }\\
\overline{x}_{max}&= \max\{\,x_1,\ldots,x_n\,\} &\text{ maximum }\\
\end{align*}
$$
\overline{x}_{min}\;\leq\; \overline{x}_{harm} \;\leq\; \overline{x}_{geom} \;\leq\; \overline{x}_{arithm} \;\leq\; \overline{x}_{quadr}\;\leq\; \overline{x}_{cubic}\;\leq\; \overline{x}_{max}
$$
 
  • Like
  • Informative
Likes   Reactions: mcastillo356 and nomadreid
Super. Thanks, fresh_42.
 
fresh_42 said:
\begin{align*}
\overline{x}_{min}&= \min\{\,x_1,\ldots,x_n\,\}&\text{ minimum }\\
\overline{x}_{harm}&= \dfrac{n}{\dfrac{1}{x_1}+\cdots+\dfrac{1}{x_n}}&\text{ harmonic mean }\\
\overline{x}_{geom}&= \sqrt[n]{x_1\cdot \cdots \cdot x_n}\; , \;x_k>0&\text{ geometric mean }\\
\overline{x}_{arithm}&= \dfrac{x_1+\cdots+x_n}{n}&\text{ arithmetic mean }\\
\overline{x}_{quadr}&= \sqrt{\dfrac{1}{n}\left(x_1^2+ \ldots + x_n^2\right)} &\text{ quadratic }\\
\overline{x}_{cubic}&= \sqrt[3]{\dfrac{1}{n}\left(x_1^3+ \ldots + x_n^3\right)} &\text{ cubic }\\
\overline{x}_{max}&= \max\{\,x_1,\ldots,x_n\,\} &\text{ maximum }\\
\end{align*}
$$
\overline{x}_{min}\;\leq\; \overline{x}_{harm} \;\leq\; \overline{x}_{geom} \;\leq\; \overline{x}_{arithm} \;\leq\; \overline{x}_{quadr}\;\leq\; \overline{x}_{cubic}\;\leq\; \overline{x}_{max}
$$

for "average velocity", we must include
\begin{align*}
\overline{v}_{avg}&=\dfrac{v_1 \Delta t_1+\cdots+v_n \Delta t_n }{\phantom{v_1}\Delta t_1 + \cdots +\phantom{v_n}\Delta t_n }&\text{ [time-weighted] average-velocity }\\
\end{align*}
(center of mass is another weighted-average)
 
  • Like
Likes   Reactions: nomadreid
One point: essentially you can put any ten functions of four variables into the cells of a 4×4 symmetric matrix and call it a spacetime metric as long as it's invertible and has a Lorentzian signature. You can feed it through the field equations and get the stress-energy tensor you need to have that spacetime - which will usually have nothing physically plausible about it.

So it's more than likely that any vaguely reasonable combination of two metrics produces something you can call a metric. Whether it produces anything physically plausible or not is another matter.

It will also be a different spacetime from either of the contributing spacetime, so the thread title doesn't really make sense.
 
  • Like
Likes   Reactions: nomadreid
Good point, Ibix.
 
  • #10
For Riemannian metrics it is ok. For indefinite ones need not be the case. For example ##g_1=-dt+dx+dy+dz## and ##g_2=dt-dx+dy+dz##. Their sum will be ##dy+dz##, which is not Lorentzian.
 
  • Like
Likes   Reactions: nomadreid
  • #11
Super counter-example, martinbn! I shall keep it among my treasures. Thanks!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
2K
  • · Replies 0 ·
Replies
0
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K