MHB Is $ \mathbb{Z}_p $ an Integral Domain and Principal Ideal Domain?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The discussion confirms that the ring $ \mathbb{Z}_p $, where $ p $ is a prime, is both a principal ideal domain (PID) and an integral domain. The proof provided demonstrates that $ \mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p$ for non-negative integers $n$, leading to the conclusion that it is a PID. Participants clarify that $ \mathbb{Z}_p $ refers to the set of integer p-adics, distinguishing it from $ \mathbb{Z}/p\mathbb{Z} $, which is a field. The conversation also explores alternative proofs for $ \mathbb{Z}_p $ being a PID but does not reach a definitive conclusion. Overall, the thread emphasizes the properties and structure of $ \mathbb{Z}_p $ in the context of ring theory.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:

The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.

I try to understand the following proof:

Proof:

We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "

Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.

Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that

$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Hello! (Wave)

The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:

The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.

I try to understand the following proof:

Proof:

We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "

Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.

Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that

$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)

Is $\mathbb Z_p$ the same as $\mathbb Z/p\mathbb Z$? In that case $\mathbb Z_p$ is a field and thus a PID. I ask this because I don't see why you'd consider $p^n\mathbb Z_p$ in your proof.
 
caffeinemachine said:
Is $\mathbb Z_p$ the same as $\mathbb Z/p\mathbb Z$? In that case $\mathbb Z_p$ is a field and thus a PID. I ask this because I don't see why you'd consider $p^n\mathbb Z_p$ in your proof.

$\mathbb{Z}_p$ is the set of integer p-adics.

We only use this sentence: "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $ because it is an other proposition of the theorem I am looking at.
So could we also prove it in an other way that $\mathbb{Z}_p$ is a PID? (Thinking)
 
evinda said:
$\mathbb{Z}_p$ is the set of integer p-adics.

We only use this sentence: "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $ because it is an other proposition of the theorem I am looking at.
So could we also prove it in an other way that $\mathbb{Z}_p$ is a PID? (Thinking)
Oh. Thanks for clarifying. Wish I could help. Don't know anything about $p$-adics.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 21 ·
Replies
21
Views
1K