MHB Is $ \mathbb{Z}_p $ an Integral Domain and Principal Ideal Domain?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The discussion confirms that the ring $ \mathbb{Z}_p $, where $ p $ is a prime, is both a principal ideal domain (PID) and an integral domain. The proof provided demonstrates that $ \mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p$ for non-negative integers $n$, leading to the conclusion that it is a PID. Participants clarify that $ \mathbb{Z}_p $ refers to the set of integer p-adics, distinguishing it from $ \mathbb{Z}/p\mathbb{Z} $, which is a field. The conversation also explores alternative proofs for $ \mathbb{Z}_p $ being a PID but does not reach a definitive conclusion. Overall, the thread emphasizes the properties and structure of $ \mathbb{Z}_p $ in the context of ring theory.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:

The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.

I try to understand the following proof:

Proof:

We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "

Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.

Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that

$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Hello! (Wave)

The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:

The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.

I try to understand the following proof:

Proof:

We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "

Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.

Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that

$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)

Is $\mathbb Z_p$ the same as $\mathbb Z/p\mathbb Z$? In that case $\mathbb Z_p$ is a field and thus a PID. I ask this because I don't see why you'd consider $p^n\mathbb Z_p$ in your proof.
 
caffeinemachine said:
Is $\mathbb Z_p$ the same as $\mathbb Z/p\mathbb Z$? In that case $\mathbb Z_p$ is a field and thus a PID. I ask this because I don't see why you'd consider $p^n\mathbb Z_p$ in your proof.

$\mathbb{Z}_p$ is the set of integer p-adics.

We only use this sentence: "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $ because it is an other proposition of the theorem I am looking at.
So could we also prove it in an other way that $\mathbb{Z}_p$ is a PID? (Thinking)
 
evinda said:
$\mathbb{Z}_p$ is the set of integer p-adics.

We only use this sentence: "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $ because it is an other proposition of the theorem I am looking at.
So could we also prove it in an other way that $\mathbb{Z}_p$ is a PID? (Thinking)
Oh. Thanks for clarifying. Wish I could help. Don't know anything about $p$-adics.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top