Is My Approach to Solving a Source-Free RLC Series Circuit Correct?

AI Thread Summary
The discussion focuses on verifying the approach to solving a source-free RLC series circuit. The initial conditions are established with a voltage of 60V and a current of 1.2A before t=0. Key calculations include determining the damping factor (α) as 1.5 and the natural frequency (ω_o) as √2. The derived expressions for current, including coefficients A and B, are confirmed with A=1.2 and B=-20.4 under specific conditions. The conversation highlights the importance of correctly interpreting initial conditions and their impact on the circuit's behavior.
wcjy
Messages
73
Reaction score
10
Homework Statement
Given the following circuit with the source voltage V1=60(V). The switch in the following circuit has been connected to A for a long time and is switched to B at t=0. The current i(t) through the capacitor C for t>0 has the following expression:

$$i(t) = Ae^{xt} + Be^{yt}$$
Relevant Equations
$$α = \frac{R}{2L}$$
$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
Hello, this is my working. My professor did not give any answer key, and thus can I check if I approach the question correctly, and also check if my answer is correct at the same time.

for t < 0,
V(0-) = V(0+) = 60V
I(0) = 60 / 50 = 1.2A

When t > 0,
$$α = \frac{R}{2L}$$
$$α = \frac{30}{2(10)}$$
$$α = 1.5 $$

$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ω_o = \frac{1}{\sqrt{10*50*10^{-3}}}$$
$$ω_o = \sqrt{2}$$

$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
$$ S_{1,2} = - 1.5 +- \sqrt{ 1.5^2 - \sqrt{2}^2}$$
$$ S_{1,2} = -1.5 +- j0.5$$

$$i(t) = e^{-1.5t}[Acos(0.5t) + Bsin(0.5t)]$$
When t = 0, i = 1.2
$$ A = 1.2$$

when t = 0
$$L\frac{di}{dt} + Ri + V= 0$$
$$\frac{di}{dt} =-\frac{1}{L} (Ri + V)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -12$$

when t = 0
$$\frac{di}{dt} = -1.5[ e^{1.5t} [ Acos(0.5t) + Bsin(0.5t)]] + 0.5e^{-1.5t}[-Asin(0.5t)+Bcos(0.5t)]$$
$$-12 = -1.5A + 0.5B$$
$$ B = -20.4$$

Therefore
A = 1.2
B = -20.4
x = 1.5
y = 1.5
 

Attachments

  • 1615636663356.png
    1615636663356.png
    104 KB · Views: 163
Physics news on Phys.org
The statement says the switch has been in in the A position for a long time (the capacitor id "fully" charged). No current flows in the "initial" condition.
 
oh so if I(0) = 0,
A = 0
di/dt = -6
B = -12
the rest remains the same?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top