shamieh
- 538
- 0
Evaluate the Integral.
Just need someone to check my work.
$$
\int sec^4y \, tan^4y$$
$$\tan^4y * sec^2y * sec^2y \, dx$$
$$tan^4y * (1 + tan^2y) * sec^2y$$
$$u = tany$$
$$du = sec^2y$$
$$\int u^4 * (1 + u^2) * du$$
$$\int u^4 + u^6 * du$$
$$\frac{u^5}{5} + \frac{u^7}{7} + C$$
$$\frac{tan^5x}{5} + \frac{tan^7x}{7} + C$$
Just need someone to check my work.
$$
\int sec^4y \, tan^4y$$
$$\tan^4y * sec^2y * sec^2y \, dx$$
$$tan^4y * (1 + tan^2y) * sec^2y$$
$$u = tany$$
$$du = sec^2y$$
$$\int u^4 * (1 + u^2) * du$$
$$\int u^4 + u^6 * du$$
$$\frac{u^5}{5} + \frac{u^7}{7} + C$$
$$\frac{tan^5x}{5} + \frac{tan^7x}{7} + C$$