Is My Solution to the Exact Differential Equation Correct?

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Solve the exact differential equation
Relevant Equations
exact equations
1614344756863.png

1614344793714.png


now my approach is different, i just want to check that my understanding on this is correct.

see my working below;
 
Last edited:
  • Like
Likes Delta2
Physics news on Phys.org
##2xy-9x^2+(2y+x^2+1)\frac {dy}{dx}=0##
##2xy-9x^2dx+(2y+x^2+1)dy=0##
Let ##M(x,y)=2xy-9x^2##
##N(x,y)=2y+x^2+1## Since ##\frac {∂M}{∂y}=2x=\frac {∂N}{∂x}=## then the differential equation is exact.
Therefore, ##\int Mdx## = ##x^2y-3x^3+F(y)##........1
and ##\int Ndy## = ##y^2+x^2y+y+c ##......2
therefore, ##F(y)= y^2+y+c##......3

therefore, we shall have (from 1 and 3), ## x^2y-3x^3+y^2+y=c##
i understand it this way better, i just want to know if this is also correct.
 
Last edited:
  • Like
Likes Delta2
Looks fine to me.
 
  • Like
Likes chwala
That's how I understand it better from my undergraduate studies...thanks
 
  • Like
Likes Delta2
chwala said:
i just want to know if this is also correct.
Once you have your solution, it's good practice to check by finding the total derivative of your expression, which you should be able to manipulate back into the form the equation was given in.
 
The solution is correct, its a textbook question...my interest was on the approach or rather my way of working the problem to realize the solution.
Thanks Mark for your input. Yeah I will use total derivatives to check the solution...
 
Mark44 said:
Once you have your solution, it's good practice to check by finding the total derivative of your expression, which you should be able to manipulate back into the form the equation was given in.

just to follow your guidance, on checking...
let ##u=x^2y-3x^3+y^2+y##
##f_{x}=2xy-9x^2##
##f_{y}=x^2+2y+1##
therefore,
##du=f_{x} dx+f_{y} dy##
##du=(2xy-9x^2)dx+(x^2+2y+1)dy##
bingo!
 
Back
Top