MHB Is RA the Smallest Submodule of M Containing A?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Generation
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
On page 351 Dummit and Foote make the following statement:

"It is easy to see using the Submodules' Criterion that for any subset A of M, RA is indeed a submodule of M and is the smallest submodule of M which contains A ... "

I am not sure how to (formally and explicitly) prove this statement.

However, reflecting on the above, it is easy to show that RA is a submodule of M, but what is worrying me is the formal proof that RA is the smallest submodule of M that contains A.

However following the statement:

"It is easy to see using the Submodules' Criterion that for any subset A of M, RA is indeed a submodule of M and is the smallest submodule of M which contains A ... " Dummit and Foote write:

"i.e. any submodule of M which contains A also contains RA"

[I still find it perplexing that this actually shows that RA is the smallest submodule of M which contains A but anyway ... this is, I think, not hard to prove ...}

So to show that any submodule of M which contains A also contains RA

Let N be a submodule of M such that A \subseteq N

We need to show that RA \subseteq N

Let x \in RA

Now RA = \{ r_1a_1 + r_2a_2 + ... ... + r_ma_m \ | \ r_1, r_2, ... ... , r_m \in R, \ a_1, a_2, ... ... , a_m \in A, m \in \mathbb{Z}^{+}

So x = r_1a_1 + r_2a_2 + ... ... + r_ma_m for r_1, r_2, ... ... , r_m \in R, \ a_1, a_2, ... ... , a_m \in A

If A \subseteq N then r_ia_i \in N for 1 \le i \le n since N is a submodule

and then the addition of these elements, visually, r_1a_1 + r_2a_2 + ... ... + r_ma_m also is in N (if two elements belong to a submodule then so does the element that is formed by their addition)

So x \in N

Thus x \in RA \Longrightarrow x \in N

So A \subseteq N \Longrightarrow RA \subseteq N ... ... (1)

However, I am still not completely sure how to formally show that RA is the smallest submodule of M that contains A i.e. how does the implication (1) demonstrate this - can someone help by showing this explicitly and formally?

Peter

[This has also been posted on MHF]
 
Last edited:
Physics news on Phys.org
Peter said:
However, I am still not completely sure how to formally show that RA is the smallest submodule of M that contains A i.e. how does the implication (1) demonstrate this - can someone help by showing this explicitly and formally?

Consider the set
$$\mathcal{N}=\{N\subseteq M:N\text{ submodule of }M\text{ and }A\subseteq N \}$$
Then, $\subseteq$ is an order relation on $\mathcal{N}$, $RA\in \mathcal{N}$ and $RA\subseteq N$ for all $N\in\mathcal{N}.$ This means that $RA$ is the smallest element related to $(\mathcal{N},\subseteq)$
 
Last edited:
One can argue by contradiction, here.

Suppose we have a submodule [math]N[/math] with:

[math]A \subseteq N \subsetneq RA[/math].

By your previous argument, since [math]N[/math] is a submodule containing [math]A[/math], we have:

[math]RA \subseteq N \subsetneq RA[/math] that is:

[math]RA \neq RA[/math], a contradiction. So no such [math]N[/math] can exist.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top