Is Studying Planar Multibody Dynamics Essential for Mechanical Engineers?

Click For Summary
Studying planar multibody dynamics is valuable for mechanical engineers, despite the availability of advanced software like MATLAB's SimMechanics and other CAD tools that simplify analysis. While many engineers rely on practical experience and basic calculations for common mechanisms, understanding the underlying theory enhances the ability to interpret results and troubleshoot issues effectively. Advanced software such as Simpack and MSC Adams is used for complex motion analysis, but foundational knowledge remains crucial for accurate modeling and analysis. Theoretical understanding aids in setting up analyses and verifying results, similar to the principles in Finite Element Analysis. Ultimately, a balance of theory and practical application is essential for successful engineering design and implementation.
zoltrix
Messages
85
Reaction score
7
Hello

I am reading the book :

" Planar Multybody dynamics, Formulation, Programming and Application"

An interesting lecture , however is it worthwhile studying these methods for kinematic and dynamic analysis of mechanical mechanisms?
I mean
There are many softwares on the market which make the job for you, for example "multibody" by MatLab ( ex Simmechanics)

what did mechanical engineers actually use on job ?

maybe none of them just the experience ?
 
Engineering news on Phys.org
Few practicing mechanical engineers ever perform analytical analyses of multibody dynamic mechanisms. Most dynamic mechanisms simplify down to a servomotor or crankshaft moving a load. Most of those cases are solved by first calculating the position, velocity, and acceleration vs time. Components are sized to meet requirements of stiffness, inertia, and strength. Peak drive torque is calculated, and the drive is sized. More advanced problems require an understanding of torsional natural frequency, and calculating an appropriate motion profile. Dynamic mechanism typically also require calculating the total system inertia reflected to the drive motor.

I had one job where the best solution used a four bar linkage driven by a servomotor. I wrote a Matlab program to plot the output motion, and used that program to iteratively design the linkage. The peak acceleration was twice the peak acceleration of a similarly sized crankshaft, which was all the necessary information to size the parts. After sizing the servomotor, it was built, started up, and it worked. Durability testing resulted in several redesigns to improve bearings and mounting of change parts.

Simulating motion is the easy part. The challenge is in designing and building something that actually works in the hands of a customer, and keeps working.
 
  • Like
  • Informative
Likes hutchphd, anorlunda, berkeman and 1 other person
zoltrix said:
There are many softwares on the market which make the job for you, for example "multibody" by MatLab ( ex Simmechanics)

what did mechanical engineers actually use on job ?
In practice, advanced MBD software such as Simpack and MSC Adams is used to analyze the motion of complex mechanisms and machines. Basic motion studies can also be performed in proper modules of CAD software like Autodesk Inventor, Fusion 360 or SolidWorks. They all offer quite advanced motion studies with evaluation of displacements, velocities, accelerations and forces, among the others. If you don't have a license for such software but would like to try something like that, check the open-source solutions. For example, you can find the add-on "Dynamics" module for FreeCAD which uses MBDyn as a solver. Its capabilities are quite impressive:



Here's a GitLab repository of this module: https://gitlab.com/josegegas/freecad-mbdyn-dynamics-workbench

However, I still think that theory can be useful. It's like with Finite Element Analysis where a software can do almost everything for you but you won't be a good analyst without the knowledge about the theory behind this method and behind solid mechanics or whatever physics are involved in your analysis. For example, you can't interpret the results properly if you don't fully understand the meaning of each output variable and don't know how your model should behave under specific loading. Setting up the analysis also requires understanding of various aspects such as material models and boundary conditions. And when something fails, you have to dive deep into the problem from the perspective of a solver. You have to understand the Newton-Raphson method to know why the analysis is divided into increments and iterations and so on. Not to even mention the verification with analytical solutions which is very often necessary in the case of FEA. Multibody dynamics simulations are different but many of these remarks still apply in some ways.
 
https://newatlas.com/technology/abenics-versatile-active-ball-joint-gear/ They say this could be used as a shoulder joint for robots. Mind boggling! I'm amazed this has been done in real life. The model they show seems impractical to me. The ball spins in place but doesn't connect to anything. I guess what they would do would be attach a shaft to that ball, then restrict the motion so the drive gears don't contact the shaft. The ball would have two limited degrees of freedom then a...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 13 ·
Replies
13
Views
5K