A Is SU(3) always contains SU(2) groups?

Ans
Messages
22
Reaction score
2
Hi,

I trying to understand. If there is non-trivial SU(3) group, is it always possible to find SU(2) as part of SU(3)?
And same question about SU(2) and U(1).
 
Physics news on Phys.org
Sure, there are many ##SU(2)## subgroups of ##SU(3)## just like there are many ##O(2)## subgroups of ##O(3)##.
 
Thanks.

And another question about same.
SU(3) seems as have less number of parameters than SU(3)xSU(2)xU(1).
If there is SU(3) group, is is possible to say it is compatible with SU(3)xSU(2)xU(1) because SU(3) always contains SU(2) subgroups, and SU(2) always contains U(1)?
 
The group, ##G_1\times G_2## is the tensor product of two independent groups. ##G_1## is contained in ##G_1\times G_2## by the projection ##\pi : (g1,g2)\rightarrow g1##. The subgroup inclusion discussed in my previous reply is a subgroup of a different sort. (Mathematics is not my strongest subject) It would help to know what you mean by "compatible?"
 
  • Like
Likes vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
8
Views
2K
Replies
21
Views
3K
Replies
2
Views
2K
Replies
61
Views
5K
Replies
1
Views
2K
Back
Top