MHB Is Substitution Effective for Integrating \(\frac{x^2}{(4-x^2)^{3/2}} \, dx\)?

  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral \(\frac{x^2}{(4 - x^2)^{3/2}} \, dx\) can be evaluated using the substitution \(x = 2\sin{(\theta)}\), which leads to \(dx = 2\cos{(\theta)}\,d\theta\). This substitution simplifies the expression significantly, allowing for easier integration. Participants express confusion about the integral's complexity but agree that the trigonometric substitution is a promising approach. The discussion emphasizes the effectiveness of substitution in solving this integral. Ultimately, the substitution method is highlighted as a viable solution strategy.
shamieh
Messages
538
Reaction score
0
Evaluate the Integral.

Please help! I am so lost on this one!

$$\frac{x^2}{(4 - x^2)^\frac{3}{2}} \, dx$$
 
Physics news on Phys.org
shamieh said:
Evaluate the Integral.

Please help! I am so lost on this one!

$$\frac{x^2}{(4 - x^2)^\frac{3}{2}} \, dx$$

The substitution \displaystyle \begin{align*} x = 2\sin{(\theta)} \implies dx = 2\cos{(\theta)}\,d\theta \end{align*} will probably work...
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
890
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K