Is Super Commutativity Essential in Defining a Super Lie Module?

  • Context: High School 
  • Thread starter Thread starter Korybut
  • Start date Start date
  • Tags Tags
    Definition module
Click For Summary
SUMMARY

The discussion centers on the definition of a super Lie module as presented in Alice Rogers' textbook "Supermanifolds theory and applications." It establishes that a super Lie algebra ##\mathfrak{u}## is a super Lie module over a super algebra ##\mathbb{A}## if the bracket operation satisfies ##[AU_1,U_2]=A[U_1,U_2]## for all elements ##A## in ##\mathbb{A}## and ##U_1, U_2## in ##\mathfrak{u}##. Participants argue that supercommutativity of the algebra ##\mathbb{A}## is essential for the definition to hold, as it impacts the calculations involving the bracket operation. The example provided in the textbook is also scrutinized for clarity regarding the necessity of supercommutativity.

PREREQUISITES
  • Understanding of super algebras and super Lie algebras
  • Familiarity with the bracket operation in algebraic structures
  • Knowledge of supercommutativity and its implications in algebra
  • Basic grasp of algebraic transformations and their properties
NEXT STEPS
  • Study the implications of supercommutativity in super algebras
  • Explore the properties of super Lie algebras in depth
  • Learn about the bracket operation and its applications in algebraic structures
  • Investigate examples of super Lie modules and their definitions in various contexts
USEFUL FOR

Mathematicians, theoretical physicists, and researchers in algebraic structures, particularly those focusing on super algebras and super Lie algebras, will benefit from this discussion.

Korybut
Messages
74
Reaction score
4
TL;DR
Is supercommutativity is necessary?
Hello!

I have some troubles with the definition of the so called super Lie module. In Alice Rogers' textbook "Supermanifolds theory and applications" definition goes as follows

Suppose that ##\mathbb{A}## is a super algebra and that #\mathfrak{u}# is a super Lie algebra which is also a super ##\mathbb{A}## module such that
## [AU_1,U_2]=A[U_1,U_2]##
for all ##A## in ##\mathbb{A}## and ##U_1,U_2## in ##\mathfrak{u}##. Then ##\mathfrak{u}## is said to be super Lie module over ##\mathbb{A}##.

According to this definition I assume that ##AU\in \mathfrak{u}## for ##A\in \mathbb{A}## and ##U\in \mathfrak{u}##. However if one considers chain of transformations
##[AU_1,BU_2]=A[U_1,BU_2]=-(-)^{|U_1|\, (|B|+|U_2|)}A[BU_2,U_1]=...##

##-(-)^{|U_1|\, (|B|+|U_2|)}AB[U_2,U_1]=(-)^{|B|\, |U_1|}AB[U_1,U_2]##
On the other hand one can do it differently
##[AU_1,BU_2]=-(-)^{|AU_1|\, |BU_2|}[BU_2,AU_1]=...=(-)^{|A| \, |B|} (-)^{|B|\, |U_1|}BA[U_1,U_2]##
If someone adds supercommutativity of the algebra #\mathbb{A}# in definition than everything is fine.

Book also provides an example

Suppose that ##\mathfrak{u}## is a super Lie algebra, and that ##\mathbb{A}## is a super algebra. Then ##\mathbb{A}\otimes \mathfrak{u}## is a super Lie module over ##\mathbb{A}##, with bracket defined by
##[AX,BY]=(-)^{|B|\, |X|} AB[X,Y].##

This example is not clear also due to same issue.

In definition of left(right) super #\mathbb{A}#-module algebra is supposed to be super sommutative (which may be relaxed I suppose). However this not required or written explicitly in definition or example of super Lie module.
 
Physics news on Phys.org
I get the following equations

\begin{align}
[A.U_1,B.U_2]&=A.[U_1,B.U_2]\\&=(-1)^{|U_1||B.U_2|}A.[B.U_2,U_1]\\&=(-1)^{|U_1||B.U_2|}A.B.[U_2,U_1]\\&=(-1)^{|U_1||B.U_2|}(-1)^{|U_2||U_1|}A.B.[U_1,U_2]\\
&=(-1)^{|U_1||B|}A.B.[U_1,U_2]\\[6pt]
[A.U_1,B.U_2]&=(-1)^{|A.U_1||B.U_2|}[B.U_2,A.U_1]\\&=(-1)^{|A.U_1||B.U_2|}(-1)^{|U_2||A|}B.A.[U_2,U_1]\\
&=(-1)^{|A||B|+|U_1||B|}B.A.[U_1,U_2]\\&=(-1)^{|U_1||B|}A.B.[U_1,U_2]
\end{align}

but have difficulties checking yours. I used the first result from (24) to (25) and the fact that we are only allowed to pull out the "scalar" at the first position of the bracket.
 
  • Like
Likes   Reactions: Korybut
fresh_42 said:
I get the following equations

\begin{align}
[A.U_1,B.U_2]&=A.[U_1,B.U_2]\\&=(-1)^{|U_1||B.U_2|}A.[B.U_2,U_1]\\&=(-1)^{|U_1||B.U_2|}A.B.[U_2,U_1]\\&=(-1)^{|U_1||B.U_2|}(-1)^{|U_2||U_1|}A.B.[U_1,U_2]\\
&=(-1)^{|U_1||B|}A.B.[U_1,U_2]\\[6pt]
[A.U_1,B.U_2]&=(-1)^{|A.U_1||B.U_2|}[B.U_2,A.U_1]\\&=(-1)^{|A.U_1||B.U_2|}(-1)^{|U_2||A|}B.A.[U_2,U_1]\\
&=(-1)^{|A||B|+|U_1||B|}B.A.[U_1,U_2]\\&=(-1)^{|U_1||B|}A.B.[U_1,U_2]
\end{align}

but have difficulties checking yours. I used the first result from (24) to (25) and the fact that we are only allowed to pull out the "scalar" at the first position of the bracket.
I do get the same results as you actually. But moving from line (8) to (9) you have used supercommutativity ##AB=(-1)^{|A|\, |B|}BA## but according to the textbook's definition algebra ##\mathbb{A}## is not necessarily super commutative it is just any super algebra. Perhaps author forgot to add this fact in the definition.
 
I think super commutativity is inevitable for compatibility reasons. The calculation uses the Lie multiplication to switch the order between ##A.B.U## and ##B.A.U##. This has to be leveled.
 
  • Like
Likes   Reactions: Korybut
fresh_42 said:
I think super commutativity is inevitable for compatibility reasons. The calculation uses the Lie multiplication to switch the order between ##A.B.U## and ##B.A.U##. This has to be leveled.
One more time thanks for your help!
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
965
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 93 ·
4
Replies
93
Views
15K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K