MHB Is tan(36°) always equal to √(5-2√5) for regular pentagons?

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Tan
AI Thread Summary
The discussion centers around the relationship between the tangent of 36 degrees and the expression √(5-2√5) in the context of regular pentagons. Participants explore the derivation of tan(36°) using trigonometric identities and relationships, particularly focusing on the equation tan(π/5) = √(5-2√5). Several mathematical steps are provided to prove this relationship, including the use of sine and cosine identities. The conversation also touches on deriving values for sine and cosine at specific angles to support the proof. Ultimately, the proof confirms that tan(36°) is indeed equal to √(5-2√5).
Monoxdifly
MHB
Messages
288
Reaction score
0
I was reading about the area of regular pentagon and it said that $$tan\frac{\pi}{5}=\sqrt{5-2\sqrt{5}}$$. Where did it come from? Does $$tan\frac{\pi}{n}$$ always equal $$\sqrt{n-2\sqrt{n}}$$? If yes, what is the proof?
 
Mathematics news on Phys.org
If I were trying to derive the value of $\tan\left(36^{\circ}\right)$, I would likely begin with:

$x\equiv18^{\circ}$

$$\sin(2x)=\cos(3x)$$

See if you can make progress from there...
 
I have got some hints from My Math Forum yesterday:
greg1313 said:
There's a proof that $\cos(36^\circ)=\dfrac{1+\sqrt5}{4}$ here. Use the identities
$$\sin(x)=\sqrt{1-\cos^2(x)}$$
($x$ is in the first quadrant) and
$$\tan(x)=\dfrac{\sin(x)}{\cos(x)}$$
to finish up, if you will.
Then I finished it up:
$$\tan(x)=\dfrac{\sin(x)}{\cos(x)}$$
$$=\frac{\sqrt{1-cos^2x}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{1-(\frac{1+\sqrt{5}}{4})^2}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{16}{16}-\frac{1+2\sqrt{5}+5}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{16-1-2\sqrt{5}-5}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{10-2\sqrt{5}}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\frac{\sqrt{10-2\sqrt{5}}}{4}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{10-2\sqrt{5}}}{1+\sqrt{5}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{(1+\sqrt{5})^2}}$$
$$=\sqrt{\frac{10-2\sqrt{5}}{1+2\sqrt{5}+5}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{6+2\sqrt{5}}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{6+2\sqrt{5}}\cdot\frac{6-2\sqrt{5}}{6-2\sqrt{5}}}$$
$$=\sqrt{\frac{{60-12\sqrt{5}-20\sqrt{5}+4(5)}}{36-4(5)}}$$
$$=\sqrt{\frac{{60-32\sqrt{5}+20}}{36-20}}$$
$$=\sqrt{\frac{{40-32\sqrt{5}}}{16}}$$
$$=\sqrt{5-2\sqrt{5}}$$
 
Last edited by a moderator:
MarkFL said:
If I were trying to derive the value of $\tan\left(36^{\circ}\right)$, I would likely begin with:

$x\equiv18^{\circ}$

$$\sin(2x)=\cos(3x)$$

See if you can make progress from there...

$$\sin(2x)=\cos(2x)\cos(x)-\sin(2x)\sin(x)\tag{1}$$

Using (1) we can get a quadratic in $\sin(x)$:

$$2\sin(x)=1-4\sin^2(x)$$

$$4\sin^2(x)+2\sin(x)-1=0$$

$$\sin(x)=\frac{-1+\sqrt{5}}{4}$$

Using a Pythagorean identity, we have:

$$\cos(x)=\sqrt{1-\sin^2(x)}=\frac{\sqrt{2(5+\sqrt{5})}}{4}$$

Hence:

$$\tan(x)=\sqrt{\frac{(\sqrt{5}-1)^2}{2(5+\sqrt{5})}}$$

And so:

$$\tan(2x)=\frac{2\sqrt{\dfrac{(\sqrt{5}-1)^2}{2(5+\sqrt{5})}}}{1-\dfrac{(\sqrt{5}-1)^2}{2(5+\sqrt{5})}}=\sqrt{\frac{\sqrt{5}(\sqrt{5}-1)^3}{8}}=\sqrt{\frac{8(5-2\sqrt{5})}{8}}=\sqrt{5-2\sqrt{5}}$$
 
MarkFL said:
$$\sin(2x)=\cos(2x)\cos(x)-\sin(2x)\sin(x)\tag{1}$$

Using (1) we can get a quadratic in $\sin(x)$:

$$2\sin(x)=1-4\sin^2(x)$$

Which (1) are you talking about?
 
$$\sin(2x)=\cos(2x)\cos(x)-\sin(2x)\sin(x)$$
$$2\sin(x)\cos(x)=(1-2\sin^2(x))\cos(x)-2\sin^2(x)\cos(x)$$
$$2\sin(x)=1-4\sin^2(x)$$
$$4\sin^2(x)+2\sin(x)-1=0$$
 
Monoxdifly said:
Which (1) are you talking about?

There is only 1 (1) that I posted:

View attachment 5444
 

Attachments

  • pointer.png
    pointer.png
    1.8 KB · Views: 107
Oops, sorry. I didn't see it. It's so far on the right that it somehow escaped my peripheral vision.
 
Back
Top