I have got some hints from My Math Forum yesterday:
greg1313 said:
There's a proof that $\cos(36^\circ)=\dfrac{1+\sqrt5}{4}$
here. Use the identities
$$\sin(x)=\sqrt{1-\cos^2(x)}$$
($x$ is in the first quadrant) and
$$\tan(x)=\dfrac{\sin(x)}{\cos(x)}$$
to finish up, if you will.
Then I finished it up:
$$\tan(x)=\dfrac{\sin(x)}{\cos(x)}$$
$$=\frac{\sqrt{1-cos^2x}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{1-(\frac{1+\sqrt{5}}{4})^2}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{16}{16}-\frac{1+2\sqrt{5}+5}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{16-1-2\sqrt{5}-5}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{\frac{10-2\sqrt{5}}{16}}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\frac{\sqrt{10-2\sqrt{5}}}{4}}{\frac{1+\sqrt{5}}{4}}$$
$$=\frac{\sqrt{10-2\sqrt{5}}}{1+\sqrt{5}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{(1+\sqrt{5})^2}}$$
$$=\sqrt{\frac{10-2\sqrt{5}}{1+2\sqrt{5}+5}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{6+2\sqrt{5}}}$$
$$=\sqrt{\frac{{10-2\sqrt{5}}}{6+2\sqrt{5}}\cdot\frac{6-2\sqrt{5}}{6-2\sqrt{5}}}$$
$$=\sqrt{\frac{{60-12\sqrt{5}-20\sqrt{5}+4(5)}}{36-4(5)}}$$
$$=\sqrt{\frac{{60-32\sqrt{5}+20}}{36-20}}$$
$$=\sqrt{\frac{{40-32\sqrt{5}}}{16}}$$
$$=\sqrt{5-2\sqrt{5}}$$