B Is this true? The area of a circle can be approximated by a polygon

Summary
Does the limit as n approaches infinity of the area of an n-sided polygon equal to the area of a circle?
Hello everyone!
I have been looking for a general equation for any regular polygon and I have arrived at this equation:

$$\frac{nx^{2}}{4}tan(90-\frac{180}{n})$$

Where x is the side length and n the number of sides.

So I thought to myself "if the number of sides is increased as to almost look like a circle, does it result in the area of a circle?"

Is this:

$$\lim_{n\to\infty} \frac{nx^{2}}{4}tan(90-\frac{180}{n}) = \frac{C^{2}}{4\pi}$$

true?
 
Last edited:
1,910
210
$$tan(90-\frac{180}{n}) $$
should become smaller with increasing n, to get a finite limit.
 

PeroK

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
10,334
3,928
Summary: Does the limit as n approaches infinity of the area of an n-sided polygon equal to the area of a circle?

Hello everyone!
I have been looking for a general equation for any regular polygon and I have arrived at this equation:

$$\frac{nx^{2}}{4}tan(90-\frac{180}{n})$$

Where x is the side length and n the number of sides.

So I thought to myself "if the number of sides is increased as to almost look like a circle, does it result in the area of a circle?"

Is this:

$$\lim_{x\to\infty} \frac{nx^{2}}{4}tan(90-\frac{180}{n}) = \frac{C^{2}}{4\pi}$$

true?
Why are you taking the limit as ##x \rightarrow \infty##?

If you keep ##x## fixed, then the area is infinite as ##n \rightarrow \infty##. If you want your polygon to tend to a finite shape, then you need ##x## and ##n## to be related.

Note that using ##l## for the length of a side might have been more conventional.

It might be simpler to look at the angle, ##\theta = 2\pi / n## at the centre of the polygon and have a fixed distance to the vertices, ##r##, say.

Then you let ##n \rightarrow \infty## and see what happens to the limit of the area of the polygons. Note that the length of the sides of the polygon will tend to ##0## in this case.
 
Last edited:

PeroK

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
10,334
3,928
PS what's perhaps more interesting is to show that the length of the perimeter of the polygons, ##nl##, tends to ##2\pi r##.
 
245
77
It's easier to see if you find the area in terms of one variable relating to a circle. Take for instance the area of a regular polygon in terms of the circumradius r and number of sides n.

##A = \frac{r^2 n sin(\frac{2\pi}{n})}{2}##

The limit of this formula as the number of sides ##n\rightarrow\infty## is the familiar formula for the area of a circle.
 

Want to reply to this thread?

"Is this true? The area of a circle can be approximated by a polygon" You must log in or register to reply here.

Related Threads for: Is this true? The area of a circle can be approximated by a polygon

  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
4
Views
7K
Replies
22
Views
4K
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
5
Views
892
Replies
1
Views
6K
Replies
4
Views
836

Hot Threads

Top