Is the Convergence of These Sequences Correctly Determined?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Convergence Sequences
Click For Summary

Discussion Overview

The discussion revolves around the convergence of two sequences, specifically analyzing the limits of the sequences defined as $\displaystyle{f_n:=\left (1-\frac{1}{2n}\right )^{3n+1}}$ and $\displaystyle{g_n:=(-1)^n+\frac{\sin n}{n}}$. Participants are examining the calculations of these limits and seeking justification for their conclusions.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant calculates the limit of $f_n$ and concludes it converges to $e^{-\frac{3}{2}}$, while questioning how to justify this result.
  • Another participant confirms the calculations for $f_n$ appear complete and correct, noting the application of multiplication and composition rules for limits.
  • Regarding $g_n$, one participant asserts that $\lim_{n\rightarrow \infty}\frac{\sin n}{n}=0$ and analyzes the behavior of $(-1)^n$ to conclude that the limit does not exist due to differing limits of subsequences.
  • A later reply agrees with the analysis of $g_n$ but seeks clarification on the notation used for the limits of the subsequences.

Areas of Agreement / Disagreement

Participants generally agree on the calculations for $f_n$ being correct, but there is uncertainty regarding the justification of the limit. For $g_n$, there is consensus on the conclusion that the limit does not exist, although the notation and specific phrasing are questioned.

Contextual Notes

The discussion includes assumptions about the continuity of functions and the behavior of subsequences, which may not be explicitly stated. There is also a reliance on the properties of limits that may require further clarification.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Check the below sequences for convergence and determine the limit if they exist. Justify the answer.

  1. $\displaystyle{f_n:=\left (1-\frac{1}{2n}\right )^{3n+1}}$
  2. $\displaystyle{g_n:=(-1)^n+\frac{\sin n}{n}}$
I have done the following:
  1. $\displaystyle{f_n:=\left (1-\frac{1}{2n}\right )^{3n+1}}$

    We have that:
    \begin{align*}\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{3n+1}&=\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{2n}\cdot \lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{n}\cdot \lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{1} \\ & =\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{2n}\cdot \lim_{n\rightarrow \infty}\left [\left (1-\frac{1}{2n}\right )^{2n}\right ]^{\frac{1}{2}}\cdot \lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right ) \\ & =\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{2n}\cdot \left [\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{2n}\right ]^{\frac{1}{2}}\cdot \lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right ) \\ & =\lim_{n\rightarrow \infty}\left (1+\frac{(-1)}{2n}\right )^{2n}\cdot \left [\lim_{n\rightarrow \infty}\left (1+\frac{(-1)}{2n}\right )^{2n}\right ]^{\frac{1}{2}}\cdot \lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )\end{align*}

    From definition, it holds that $\displaystyle{\lim_{n\rightarrow \infty}\left (1+\frac{x}{n}\right )^n=e^x}$.

    We calculate the limit $\displaystyle{\lim_{n\rightarrow \infty}\left (1+\frac{(-1)}{2n}\right )^{2n}}$ :

    Let $m:=2n$. If $n\rightarrow \infty$ then $m\rightarrow \infty$.

    So we get:
    \begin{equation*}\lim_{n\rightarrow \infty}\left (1+\frac{(-1)}{2n}\right )^{2n}=\lim_{m\rightarrow \infty}\left (1+\frac{(-1)}{m}\right )^{m}=e^{-1}\end{equation*}

    Now we consider the limit $\displaystyle{\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )}$ :

    It holds the following:
    \begin{equation*}\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )=\lim_{n\rightarrow \infty}1-\lim_{n\rightarrow \infty}\frac{1}{2n}=\lim_{n\rightarrow \infty}1-\frac{1}{2}\cdot \lim_{n\rightarrow \infty}\frac{1}{n}=1-\frac{1}{2}\cdot 0=1-0=1\end{equation*}

    So we get:
    \begin{equation*}\lim_{n\rightarrow \infty}f_n=\lim_{n\rightarrow \infty}\left (1-\frac{1}{2n}\right )^{3n+1}=e^{-1}\cdot \left [e^{-1}\right ]^{\frac{1}{2}}\cdot 1=e^{-1}\cdot e^{-\frac{1}{2}}=e^{-1-\frac{1}{2}}=e^{-\frac{3}{2} }\end{equation*} Is everything correct? So we have checked the convergence by calculating the limit, right? But how can we justify the answer? (Wondering)
  2. Could you give me a hint for that one? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is everything correct? So we have checked the convergence by calculating the limit, right? But how can we justify the answer? (Wondering) [*] Could you give me a hint for that one? (Wondering)
[/LIST]

Justify... Didn't you just do that?

That one - Does a pulsar hold still?
 
So is the first limit complete and correct? (Wondering) About the second limit, is it as follows?

It holds that $\displaystyle{\lim_{n\rightarrow \infty}\frac{\sin n}{n}=0}$.

$(-1)^n$ is $1$ for even $n$ and $-1$ for odd $n$. So $\displaystyle{(-1)^n+\frac{\sin n}{n}}$ is $1+0=1$ for even $n$ and $-1+0=-1$ for odd $n$.

So $g_{2n} = 1$ and $g_{2n+1} = -1$.

The subsequences $g_{2n}$ and $g_{2n+1}$ have different limits ($\lim g_{2n} = 1$ and $\lim g_{2n+1} = -1$), therefore the limit $\lim g_n$ doesn't exist. Is that correct? (Wondering)
 
Last edited by a moderator:
mathmari said:
So is the first limit complete and correct?

It looks complete and correct to me. (Nod)
You have applied to multiplication and composition rules for limits, which is correct since all limits exist, and since the function in the composition is continuous. (Nerd)

mathmari said:
About the second limit, is it as follows?

It holds that $\displaystyle{\lim_{n\rightarrow \infty}\frac{\sin n}{n}=0}$.

$(-1)^n$ is $1$ for even $n$ and $-1$ for odd $n$. So $\displaystyle{(-1)^n+\frac{\sin n}{n}}$ is $1+0=1$ for even $n$ and $-1+0=-1$ for odd $n$.

So $g_{2n} = 1$ and $g_{2n+1} = -1$.

The subsequences $g_{2n}$ and $g_{2n+1}$ have different limits ($\lim g_{2n} = 1$ and $\lim g_{2n+1} = -1$), therefore the limit $\lim g_n$ doesn't exist. Is that correct?

I think you meant that $\lim\limits_{n\to\infty}g_{2n} = 1$ and $\lim\limits_{n\to\infty}g_{2n+1} = -1$, didn't you? Because $g_{2n} \ne 1$.
Otherwise it's all correct. (Nod)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
Replies
1
Views
2K