MHB Is the Given Answer for the Classical Mechanics Problem on Earth Correct?

Click For Summary
The discussion centers on determining the correct radius \( r \) for achieving zero free fall on Earth by equating centripetal acceleration to gravitational acceleration. The formula derived is \( \omega^2 r = \frac{GM}{r^2} \), leading to \( r^3 = 8.172587755 \times 10^{22} \, m^3/rad^2 \). The calculated radius is approximately \( 4.3 \times 10^7 \, m \), but there is confusion regarding the precision of the answer, which is presented as \( 4.4 \times 10^7 \, m \). The conversation highlights that the unit "rad" is not a physical unit, and the discrepancies in the final answer may arise from variations in the values of mass and angular velocity used. Ultimately, the consensus is that the answer should be closer to \( 4.3 \times 10^7 \, m \).
WMDhamnekar
MHB
Messages
376
Reaction score
28
1603267564241.png
 
Mathematics news on Phys.org
We are given the angular velocity $\omega = 7\cdot 10^{-5}\,rad/s$ and the mass $M=6\cdot 10^{24}\,kg$.
To achieve a free fall of $0\,m/s^2$ at radius $r$ we need that the centripetal acceleration is equal to the acceleration due to gravity,
Note that $v=\omega r$, so the centripetal acceleration is $\frac{v^2}{r}=\omega^2 r$.
The acceleration due to gravity is $\frac{GM}{r^2}$, where $G=6.67\cdot 10^{-11}$ is the gravitational constant (leaving out the unit while assuming SI units).
So:
$$\omega^2 r = \frac{GM}{r^2}$$
Solve for $r$.
 
Last edited:
Klaas van Aarsen said:
We are given the angular velocity $\omega = 7\cdot 10^{-5}\,rad/s$ and the mass $M=6\cdot 10^{24}\,kg$.
To achieve a free fall of $0\,m/s^2$ at radius $r$ we need that the centripetal acceleration is equal to the acceleration due to gravity,
Note that $v=\omega r$, so the centripetal acceleration is $\frac{v^2}{r}=\omega^2 r$.
The acceleration due to gravity is $\frac{GM}{r^2}$, where $G=6.67\cdot 10^{-11}$ is the gravitational constant (leaving out the unit while assuming SI units).
So:
$$\omega^2 r = \frac{GM}{r^2}$$
Solve for $r$.
Hi,
So, we get $r^3 =8.172587755e22m^3/rad^2$ So,$r=43396349.43332m/\sqrt[3]{rad^2}$. Is this answer correct?
 
Dhamnekar Winod said:
Hi,
So, we get $r^3 =8.172587755e22m^3/rad^2$ So,$r=43396349.43332m/\sqrt[3]{rad^2}$. Is this answer correct?
I get the same answer.
Do note that $rad$ is not an actual physical unit, but it's a ratio. When we multiply the angular velocity (rad/s) with the radius (m), the rad unit is effectively eliminated and we get m/s.
So properly we have $r=4.3\cdot 10^7\,m$.

It means that answer 2 should be the correct answer.
Admittedly it's a bit strange that it is given as $4.4\cdot 10^7\,m$ instead of $4.3\cdot 10^7\,m$.
Since we're talking about earth, perhaps they used a mass and angular velocity with a higher precision than the ones given in the problem statement.
EDIT: Hmm... in that case we would actually get $r=4.2\cdot 10^7\,m$, so that can't be it after all.
 
Last edited:

Similar threads

Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 39 ·
2
Replies
39
Views
8K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K