MHB Is the Given Answer for the Classical Mechanics Problem on Earth Correct?

WMDhamnekar
MHB
Messages
376
Reaction score
28
1603267564241.png
 
Mathematics news on Phys.org
We are given the angular velocity $\omega = 7\cdot 10^{-5}\,rad/s$ and the mass $M=6\cdot 10^{24}\,kg$.
To achieve a free fall of $0\,m/s^2$ at radius $r$ we need that the centripetal acceleration is equal to the acceleration due to gravity,
Note that $v=\omega r$, so the centripetal acceleration is $\frac{v^2}{r}=\omega^2 r$.
The acceleration due to gravity is $\frac{GM}{r^2}$, where $G=6.67\cdot 10^{-11}$ is the gravitational constant (leaving out the unit while assuming SI units).
So:
$$\omega^2 r = \frac{GM}{r^2}$$
Solve for $r$.
 
Last edited:
Klaas van Aarsen said:
We are given the angular velocity $\omega = 7\cdot 10^{-5}\,rad/s$ and the mass $M=6\cdot 10^{24}\,kg$.
To achieve a free fall of $0\,m/s^2$ at radius $r$ we need that the centripetal acceleration is equal to the acceleration due to gravity,
Note that $v=\omega r$, so the centripetal acceleration is $\frac{v^2}{r}=\omega^2 r$.
The acceleration due to gravity is $\frac{GM}{r^2}$, where $G=6.67\cdot 10^{-11}$ is the gravitational constant (leaving out the unit while assuming SI units).
So:
$$\omega^2 r = \frac{GM}{r^2}$$
Solve for $r$.
Hi,
So, we get $r^3 =8.172587755e22m^3/rad^2$ So,$r=43396349.43332m/\sqrt[3]{rad^2}$. Is this answer correct?
 
Dhamnekar Winod said:
Hi,
So, we get $r^3 =8.172587755e22m^3/rad^2$ So,$r=43396349.43332m/\sqrt[3]{rad^2}$. Is this answer correct?
I get the same answer.
Do note that $rad$ is not an actual physical unit, but it's a ratio. When we multiply the angular velocity (rad/s) with the radius (m), the rad unit is effectively eliminated and we get m/s.
So properly we have $r=4.3\cdot 10^7\,m$.

It means that answer 2 should be the correct answer.
Admittedly it's a bit strange that it is given as $4.4\cdot 10^7\,m$ instead of $4.3\cdot 10^7\,m$.
Since we're talking about earth, perhaps they used a mass and angular velocity with a higher precision than the ones given in the problem statement.
EDIT: Hmm... in that case we would actually get $r=4.2\cdot 10^7\,m$, so that can't be it after all.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
17
Views
2K
Replies
1
Views
655
Replies
39
Views
7K
Replies
1
Views
1K
Back
Top