WMDhamnekar
MHB
- 376
- 28
Hi,Klaas van Aarsen said:We are given the angular velocity $\omega = 7\cdot 10^{-5}\,rad/s$ and the mass $M=6\cdot 10^{24}\,kg$.
To achieve a free fall of $0\,m/s^2$ at radius $r$ we need that the centripetal acceleration is equal to the acceleration due to gravity,
Note that $v=\omega r$, so the centripetal acceleration is $\frac{v^2}{r}=\omega^2 r$.
The acceleration due to gravity is $\frac{GM}{r^2}$, where $G=6.67\cdot 10^{-11}$ is the gravitational constant (leaving out the unit while assuming SI units).
So:
$$\omega^2 r = \frac{GM}{r^2}$$
Solve for $r$.
I get the same answer.Dhamnekar Winod said:Hi,
So, we get $r^3 =8.172587755e22m^3/rad^2$ So,$r=43396349.43332m/\sqrt[3]{rad^2}$. Is this answer correct?