cragar
- 2,546
- 3
Homework Statement
when using E=(h(pi)n)^2/(2mL)
h=h bar m= mass of particle L= length
this may be a dumb question but is the ground state 0 or 1 for n
n=0,1,2...
The ground state quantum number for a particle in a box is definitively n = 1. This conclusion is drawn from the equation E = (h(pi)n)^2/(2mL), where h represents Planck's constant, m is the mass of the particle, and L is the length of the box. The quantum number n takes values starting from 1, as indicated by the sequence n = 0, 1, 2..., with n = 0 not applicable in this context. Therefore, for a particle in a box, the lowest energy state corresponds to n = 1.
PREREQUISITESStudents of quantum mechanics, physics educators, and anyone interested in understanding the foundational concepts of quantum states and energy levels in quantum systems.