MHB Is the Inner Product Space in C[0,2] Satisfied by the Integral Equality?

Poirot1
Messages
243
Reaction score
0
consider C[0,2], the set of continuous functions from [0,2] to C.

The inner product is <f,g> = the integral of f(t)g(t)* from 0 to 2. show that:

sqrt(2)||f|| is greater than or equal to the magnitude of the integral of f from 0 to 2, where ||.|| is the norm of f.
 
Physics news on Phys.org
What does g* mean?
 
conjugate
 
Poirot said:
consider C[0,2], the set of continuous functions from [0,2] to C.

The inner product is <f,g> = the integral of f(t)g(t)* from 0 to 2. show that:

sqrt(2)||f|| is greater than or equal to the magnitude of the integral of f from 0 to 2, where ||.|| is the norm of f.
What have you tried so far? Can you think of results that might help here (Cauchy–Schwarz inequality perhaps, for a suitable choice of g)?
 
Opalg said:
What have you tried so far? Can you think of results that might help here (Cauchy–Schwarz inequality perhaps, for a suitable choice of g)?

I've tried writing what each side is. I don't see how schwarz inequality is relevant. I'm interested in f, not g.
 
$$|\int_0^2 f(t)dt|=|2\bar{f}_1+2i\bar{f}_2|=\sqrt{4(\bar{f}_1)^2+4(\bar{f}_2)^2}=2\sqrt{(|\bar{f}|)^2}\leq 2\sqrt{\bar{|f|^2}}=2\sqrt{(\int_0^2 |f|^2 dt)/2}=\sqrt{2}||f||$$

where the bar is the average and $$f=f_1+if_2$$.

EDIT: I made a correction and some clarifications of notation.
 
Last edited by a moderator:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top