MHB Is the Irreducible Polynomial of u the Minimal Polynomial?

Click For Summary
In field theory, determining an irreducible polynomial f in F[x] such that f(u) = 0 in E does not automatically imply that f is the minimal polynomial of u over F. For f to be the minimal polynomial, it must also be monic, meaning its leading coefficient must be 1. An example illustrates that a polynomial like f(x) = 3x^2 - 6 is irreducible but not minimal because it is not monic; it can be adjusted by multiplying by a unit to achieve monicity. Moreover, while finding f(u) = 0 is straightforward, proving the irreducibility of polynomials, especially those of higher degrees, can be significantly more challenging. Thus, both conditions of irreducibility and monicity must be satisfied to confirm that f is indeed the minimal polynomial of u.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am studying field theory.

A general question I have is the following:

Let E \supseteq F be fields and let u \in E.

Now, if I determine an irreducible polynomial f in F[x] such that f(u) = 0 in E, can I conclude that I have found the minimal polynomial of u over F.

Can someone please help?

Peter

[Note: This has also been posted on MHF]
 
Physics news on Phys.org
Recall that in a UFD, irreducibles are only unique "up to a unit factor" (and the units of a polynomial ring over a field are the non-zero field elements), so to conclude $f$ is THE minimal polynomial of $u$, we must have that $f$ is MONIC. For example:

$f(x) = 3x^2 - 6$ is A(n irreducible) polynomial in $\Bbb Q[x]$ for which we have $f(\sqrt{2}) = 0$, but it is not THE minimal polynomial of $\sqrt{2}$ precisely because it is not monic. To fix this, we have to multiply by the unit $\frac{1}{3}$.

Also, as a practical matter, determining that $f(u) = 0$ is usually the easy part. Proving irreducibility is often much more difficult, especially with polynomials of degree 4 or higher, which is why they are not often used as examples.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K