I Is the Order of an Automorphism in a Field with Characteristic p Equal to p?

HDB1
Messages
77
Reaction score
7
Please, I have a question about automorphism:

Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.

Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance, :heart:
 
Physics news on Phys.org
Dear @fresh_42 , if you could help, I would appreciate that, :heart: :heart:
 
HDB1 said:
Please, I have a question about automorphism:

Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.

Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance, :heart:
This is not the case.

Consider ##\mathbb{F}_3=\mathbb{Z}/3\mathbb{Z}=\{\bar 0\, , \,\bar 1\, , \,\bar 2\, , \,\}## and the polynomial ##f(x)=x^2+\bar1 \in \mathbb{F}_3[x].## It has no zeros in ##\mathbb{F}_3## since ##f(\bar 0)=\bar 1 \, , \,f(\bar 1)= \bar 2 \, , \,f(\bar 2)=\bar 2 .## Therefore, it has no factors of degree ##1,## i.e. it is irreducible. If we add a zero ##\mathrm{i}## of ##x^2+1## to ##\mathbb{F}_3,## i.e. we build
$$
\mathbb{K}=\mathbb{F}_3[x]/\langle x^2+1 \rangle \cong \mathbb{F}_3[\mathrm{i}]
$$
then ##\mathbb{F}_3 \subsetneq \mathbb{F}_3[\mathrm{i}]=\mathbb{K}## is a proper field extension and ##\operatorname{char}\mathbb{F}_3=\operatorname{char}\mathbb{K}=3.##

We define ## \sigma (a+b\mathrm{i}):=a-b \mathrm{i}## for all ##a,b \in \mathbb{F}_3.## Then ##\sigma ## is an automorphism of ##\mathbb{K}## and ##\sigma^2=\operatorname{id}_{\mathbb{K}},## i.e. ##\operatorname{ord}(\sigma)=2.##

However, and maybe this is what you meant, there is a certain automorphism for fields of finite characteristic. Say ##\operatorname{char}\mathbb{K}=p.## Then ##x\longmapsto x^p## is the Frobenius homomorphism which is an automorphism of ##\mathbb{K}## and the identity map on the prime field ##\mathbb{F}_p## of ##\mathbb{K}.##
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top