I Is the Order of an Automorphism in a Field with Characteristic p Equal to p?

HDB1
Messages
77
Reaction score
7
Please, I have a question about automorphism:

Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.

Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance, :heart:
 
Physics news on Phys.org
Dear @fresh_42 , if you could help, I would appreciate that, :heart: :heart:
 
HDB1 said:
Please, I have a question about automorphism:

Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.

Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance, :heart:
This is not the case.

Consider ##\mathbb{F}_3=\mathbb{Z}/3\mathbb{Z}=\{\bar 0\, , \,\bar 1\, , \,\bar 2\, , \,\}## and the polynomial ##f(x)=x^2+\bar1 \in \mathbb{F}_3[x].## It has no zeros in ##\mathbb{F}_3## since ##f(\bar 0)=\bar 1 \, , \,f(\bar 1)= \bar 2 \, , \,f(\bar 2)=\bar 2 .## Therefore, it has no factors of degree ##1,## i.e. it is irreducible. If we add a zero ##\mathrm{i}## of ##x^2+1## to ##\mathbb{F}_3,## i.e. we build
$$
\mathbb{K}=\mathbb{F}_3[x]/\langle x^2+1 \rangle \cong \mathbb{F}_3[\mathrm{i}]
$$
then ##\mathbb{F}_3 \subsetneq \mathbb{F}_3[\mathrm{i}]=\mathbb{K}## is a proper field extension and ##\operatorname{char}\mathbb{F}_3=\operatorname{char}\mathbb{K}=3.##

We define ## \sigma (a+b\mathrm{i}):=a-b \mathrm{i}## for all ##a,b \in \mathbb{F}_3.## Then ##\sigma ## is an automorphism of ##\mathbb{K}## and ##\sigma^2=\operatorname{id}_{\mathbb{K}},## i.e. ##\operatorname{ord}(\sigma)=2.##

However, and maybe this is what you meant, there is a certain automorphism for fields of finite characteristic. Say ##\operatorname{char}\mathbb{K}=p.## Then ##x\longmapsto x^p## is the Frobenius homomorphism which is an automorphism of ##\mathbb{K}## and the identity map on the prime field ##\mathbb{F}_p## of ##\mathbb{K}.##
 
Last edited:
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
785
  • · Replies 1 ·
Replies
1
Views
709
  • · Replies 4 ·
Replies
4
Views
2K
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
725
  • · Replies 26 ·
Replies
26
Views
675
Replies
31
Views
1K
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
940
  • · Replies 19 ·
Replies
19
Views
4K