Is the phase shift of a tuned mass damper ##\frac{\pi}{2}## or ##\pi##?

AI Thread Summary
The phase shift of a tuned mass damper (TMD) in relation to the oscillation of a surrounding structure is debated, with simple resonance theory suggesting a phase shift of π/2, while many animations depict it as π. Conflicting sources indicate that ideally, a 90-degree phase difference is achieved by tuning the TMD to the natural frequency of the structure, yet some sources assert that TMDs operate 180 degrees out of phase. The discussion highlights that the force of the TMD should counteract the velocity of the structure, leading to a phase shift of π at resonance due to frictional forces. Additionally, the interaction between coupled resonant systems can result in complex phase relationships, but the central frequency still maintains a π phase shift. Understanding these dynamics is crucial for effectively implementing TMDs in vibration control systems.
greypilgrim
Messages
579
Reaction score
44
Hi.

What is the phase shift of a tuned mass damper with respect to the oscillation of the surrounding structure, such as the big pendulum in Taipei 101? Simple resonance theory would suggest ##\frac{\pi}{2}##, but animations in explanatory videos often depict them in anti-phase, i.e. a phase shift of ##\pi##.

I tried Google but couldn't get a clear result. This document here even seems to be contradictory, on p. 2 it says
The ideal extent of phase difference between the motion of the TMD mass and that of the structure, i.e. 90 degrees, is attained by tuning the TMD to the natural frequency of the structural mode targeted for damping.
whereas on p. 5
Typically TMDs are integrated into the building frame in such a way that the TMD's mass moves 180 degrees out of phase with the building.
Some sources even explain those systems with destructive interference (where anti-phase would make sense), but isn't that something very different and not really related to resonance?
 
Engineering news on Phys.org
Start with basic vibration theory for a simple spring-mass system without damping. The force of the spring is proportional to the position of the mass. If you add an external force that is proportional to the position of the mass, you change the spring constant, which changes the natural frequency without adding damping.

Now take a simple spring-mass-damper system. The force of the damper is proportional to the velocity of the mass. The velocity is zero at the extreme positions, and maximum at zero position. If you are using a TMD to reduce vibration, you want the force of the tuned mass to be proportional to and opposite the velocity of the structure. The force of the tuned mass is proportional to the relative displacement between the tuned mass and the vibrating structure.
 
  • Informative
  • Like
Likes DaveE and berkeman
Any resonator will present a purely resistive, or frictional, force at its resonant frequency. The generator then does work against this friction. As friction opposes the generator, we say the phase shift is pi radians.
Where we have two coupled resonant devices, the combined system may have a double resonance, depending on the amount of coupling. But at the centre frequency it will still create a phase shift of pi radians.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top