Is the probability of a quantum outcome ever zero such as with....

Click For Summary
SUMMARY

The discussion centers on the probabilities of quantum outcomes, specifically addressing the likelihood of finding an electron in a specific location and the simultaneous decay of radioactive atoms. It is established that while quantum mechanics allows for non-zero probabilities, certain transitions, such as forbidden transitions in hydrogen, result in zero probabilities. The conversation highlights that in an infinite universe, events with extremely low probabilities may occur infinitely, yet practically, these occurrences remain negligible. The role of quantization in matter, energy, space, and time is also emphasized, particularly in relation to Planck units.

PREREQUISITES
  • Understanding of quantum mechanics principles
  • Familiarity with quantum field theory (QFT)
  • Knowledge of atomic structure and electron behavior
  • Concept of forbidden transitions in quantum systems
NEXT STEPS
  • Explore the implications of Planck units in quantum mechanics
  • Study the concept of forbidden transitions in atomic physics
  • Learn about quantum field theory and its applications
  • Investigate statistical properties of radioactive decay
USEFUL FOR

Physicists, quantum mechanics students, researchers in atomic physics, and anyone interested in the statistical nature of quantum events.

CosmicVoyager
Messages
164
Reaction score
0
TL;DR
Is the probability of a quantum outcome ever zero such as with the location of an electron around atom or with radioactive decay?
Greetings,

Given an infinite universe or an infinite number of universes?

- Regarding the location of an electron around an atom, is there a tiny volume in which finding the electron 100%? Or is there a possibility, no matter how remote, it might be found a meter away or a kilometer away?

- Regarding radioactive decay, must the half-life rule always occur? Is there any possibility that all the radioactive atoms in a billion atom sample will decay at once?

Are such outcomes prevented by matter, energy, space, and time being quantized? By Planck units? Does that cause probabilities to become zero?

Thanks
 
Physics news on Phys.org
There are zero or one probabilities in quantum mechanics.
For example there are transitions in atoms (best example is hydrogen) which can't occur. So called forbidden transitions.
Also electrons are fermions and thus can't occupy the same quantum numbers. I.e. if you have a wave function ##\psi(x_1, x_2)## this will become zero for ##x_1 \to x_2##. And if the wavefunction is zero then the probability (density) ##|\psi(x, x)|^2## is also zero.

Regarding your second question: This is effectively a statistical property. So in theory.. yes. However I reckon the probability of a billion atoms all decaying at the same time is effectively zero. So in theory yes, in practice not really.
 
  • Like
Likes   Reactions: CosmicVoyager, vanhees71 and PeroK
CosmicVoyager said:
- Regarding the location of an electron around an atom, is there a tiny volume in which finding the electron 100%? Or is there a possibility, no matter how remote, it might be found a meter away or a kilometer away?
Basic QM is non relativistic and there is a non-zero probability of a particle being found outside its future light cone. That's one reason that ultimately you need QFT to describe elementary particles.

Moreover, in order to test something you need a realistic probability in order to confirm the theory with experiment. If the probability of something is vanishingly small, then it's experimentally indistinguishable from the impossible.
 
  • Like
Likes   Reactions: CosmicVoyager and DrChinese
EmilD said:
So in theory yes, in practice not really.
PeroK said:
If the probability of something is vanishingly small, then it's experimentally indistinguishable from the impossible.

Thanks for your very helpful replies. So, though the odds of us observing such events is practically zero, in an infinite universe or in an infinite number of universes, these events would occur. And would actually occur an infinite number of times, correct?
 
Last edited:
CosmicVoyager said:
Thanks for your very helpful replies. So, though the odds of us observing such events is practically zero, in an infinite universe or in an infinite number of universes, these events would occur. And would actually occur an infinite number of times, correct?
I'm not sure that's a well-defined question. In QM generally you can only talk about the measurements you do make.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 21 ·
Replies
21
Views
2K